Cargando…

Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering

Monodominant patches of forest dominated by Gilbertiodendron dewevrei are commonly found in central African tropical forests, alongside forests with high species diversity. Although these forests are generally found sparsely distributed along rivers, their occurrence is not thought to be (clearly) d...

Descripción completa

Detalles Bibliográficos
Autores principales: Kearsley, Elizabeth, Verbeeck, Hans, Hufkens, Koen, Van de Perre, Frederik, Doetterl, Sebastian, Baert, Geert, Beeckman, Hans, Boeckx, Pascal, Huygens, Dries
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216677/
https://www.ncbi.nlm.nih.gov/pubmed/28070293
http://dx.doi.org/10.1002/ece3.2589
Descripción
Sumario:Monodominant patches of forest dominated by Gilbertiodendron dewevrei are commonly found in central African tropical forests, alongside forests with high species diversity. Although these forests are generally found sparsely distributed along rivers, their occurrence is not thought to be (clearly) driven by edaphic conditions but rather by trait combinations of G. dewevrei that aid in achieving monodominance. Functional community structure between these monodominant and mixed forests has, however, not yet been compared. Additionally, little is known about nondominant species in the monodominant forest community. These two topics are addressed in this study. We investigate the functional community structure of 10 one‐hectare plots of monodominant and mixed forests in a central region of the Congo basin, in DR Congo. Thirteen leaf and wood traits are measured, covering 95% (basal area weighted) of all species present in the plots, including leaf nutrient contents, leaf isotopic compositions, specific leaf area, wood density, and vessel anatomy. The trait‐based assessment of G. dewevrei shows an ensemble of traits related to water use and transport that could be favorable for its location near forest rivers. Moreover, indications have been found for N and P limitations in the monodominant forest, possibly related to ectomycorrhizal associations formed with G. dewevrei. Reduced leaf N and P contents are found at the community level for the monodominant forest and for different nondominant groups, as compared to those in the mixed forest. In summary, this work shows that environmental filtering does prevail in the monodominant G. dewevrei forest, leading to lower functional diversity in this forest type, with the dominant species showing beneficial traits related to its common riverine locations and with reduced soil N and P availability found in this environment, both coregulating the tree community assembly.