Cargando…
The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer
The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATP...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216787/ https://www.ncbi.nlm.nih.gov/pubmed/27323815 http://dx.doi.org/10.18632/oncotarget.10063 |
Sumario: | The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer. |
---|