Cargando…
Alveolar rhabdomyosarcoma: morphoproteomics and personalized tumor graft testing further define the biology of PAX3-FKHR(FOXO1) subtype and provide targeted therapeutic options
Alveolar rhabdomyosarcoma (ARMS) represents a block in differentiation of malignant myoblasts. Genomic events implicated in the pathogenesis of ARMS involve PAX3-FKHR (FOXO1) or PAX7-FKHR (FOXO1) translocation with corresponding fusion transcripts and fusion proteins. Commonalities in ARMS include u...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216796/ https://www.ncbi.nlm.nih.gov/pubmed/27323832 http://dx.doi.org/10.18632/oncotarget.10089 |
Sumario: | Alveolar rhabdomyosarcoma (ARMS) represents a block in differentiation of malignant myoblasts. Genomic events implicated in the pathogenesis of ARMS involve PAX3-FKHR (FOXO1) or PAX7-FKHR (FOXO1) translocation with corresponding fusion transcripts and fusion proteins. Commonalities in ARMS include uncontrollable proliferation and failure to differentiate. The genomic-molecular correlates contributing to the etiopathogenesis of ARMS incorporate PAX3-FKHR (FOXO1) fusion protein stimulation of the IGF-1R, c-Met and GSK3-β pathways. With sequential morphoproteomic profiling on such a case in conjunction with personalized tumor graft testing, we provide an expanded definition of the biology of PAX3-FKHR (FOXO1) ARMS that integrates genomics, proteomics and pharmacogenomics. Moreover, therapies that target the genomic and molecular biology and lead to tumoral regression and/or tumoral growth inhibition in a xenograft model of ARMS are identified. SIGNIFICANCE: This case study could serve as a model for clinical trials using relatively low toxicity agents in both initial and maintenance therapies to induce remission and reduce the risk of recurrent disease in PAX3-FKHR (FOXO1) subtype of ARMS. |
---|