Cargando…

Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions

Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition va...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Induck, Kang, Chon-Sik, Lee, Choon-Kee, Kim, Sun-Lim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Food Science and Nutrition 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216894/
https://www.ncbi.nlm.nih.gov/pubmed/28078265
http://dx.doi.org/10.3746/pnf.2016.21.4.393
Descripción
Sumario:Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait.