Cargando…
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomi...
Autores principales: | Cuevas, Jaime, Crossa, José, Montesinos-López, Osval A., Burgueño, Juan, Pérez-Rodríguez, Paulino, de los Campos, Gustavo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217122/ https://www.ncbi.nlm.nih.gov/pubmed/27793970 http://dx.doi.org/10.1534/g3.116.035584 |
Ejemplares similares
-
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
por: Montesinos-López, Abelardo, et al.
Publicado: (2016) -
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction
por: Bandeira e Sousa, Massaine, et al.
Publicado: (2017) -
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
por: Cuevas, Jaime, et al.
Publicado: (2018) -
BGGE: A New Package for Genomic-Enabled Prediction Incorporating Genotype × Environment Interaction Models
por: Granato, Italo, et al.
Publicado: (2018) -
Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials
por: Cuevas, Jaime, et al.
Publicado: (2019)