Cargando…
Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data
BACKGROUND: Drug-drug interactions (DDIs) are one of the major concerns in drug discovery. Accurate prediction of potential DDIs can help to reduce unexpected interactions in the entire lifecycle of drugs, and are important for the drug safety surveillance. RESULTS: Since many DDIs are not detected...
Autores principales: | Zhang, Wen, Chen, Yanlin, Liu, Feng, Luo, Fei, Tian, Gang, Li, Xiaohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217341/ https://www.ncbi.nlm.nih.gov/pubmed/28056782 http://dx.doi.org/10.1186/s12859-016-1415-9 |
Ejemplares similares
-
Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation
por: Huang, Yu-Fen, et al.
Publicado: (2013) -
Chemical proteomics, an integrated research engine for exploring drug-target-phenotype interactions
por: Kwon, Ho Jeong, et al.
Publicado: (2018) -
Prediction of Drug–Target Interaction Networks from the Integration of Protein Sequences and Drug Chemical Structures
por: Meng, Fan-Rong, et al.
Publicado: (2017) -
Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs
por: Liu, Mei, et al.
Publicado: (2012) -
Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
por: Yamanishi, Yoshihiro, et al.
Publicado: (2008)