Cargando…

Cognitive performance during passive heat exposure in Japanese males and tropical Asian males from Southeast Asian living in Japan

BACKGROUND: Heat acclimatization studies have reported that tropical natives have better physiological function to tolerate heat exposure compared to those from temperate natives, in which may result in a better ability to show a better resistance to performance losses during heat stress. In this st...

Descripción completa

Detalles Bibliográficos
Autores principales: Wijayanto, Titis, Toramoto, Sayo, Maeda, Yasuhiko, Son, Su-Young, Umezaki, Sonomi, Tochihara, Yutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217342/
https://www.ncbi.nlm.nih.gov/pubmed/28057082
http://dx.doi.org/10.1186/s40101-016-0124-4
Descripción
Sumario:BACKGROUND: Heat acclimatization studies have reported that tropical natives have better physiological function to tolerate heat exposure compared to those from temperate natives, in which may result in a better ability to show a better resistance to performance losses during heat stress. In this study, we investigate whether the degree of heat acclimatization affects cognitive abilities during heat exposure by comparing heat acclimatization level of subjects from Southeast Asia and temperate natives from Japan. METHODS: Eleven tropical males from Southeast Asia and ten temperate males from Japan participated in this study and performed two types of cognitive task: short-term memory test and mental arithmetic test, under control and passive heat exposure conditions. Passive heat condition was stimulated through leg immersion protocol by immersing subjects’ lower legs into a hot water maintained at 42 °C in a chamber controlled at 28 °C air temperature and 50% relative humidity. RESULTS: The results show that the subjects in tropical group, who had smaller increase of rectal temperature, did not show any performance losses in both cognitive tests during heat exposure, while for Japanese group, there was performance decrement in mental arithmetic test during heat exposure (P < 0.05). We also found that the subjects in both tropical and Japanese groups tried to maintain their performance by increasing oxyhemoglobin in their prefrontal cortex area during performing the tasks during heat exposure. In addition, the subjects in the Japanese group showed higher increase of oxyhemoglobin when they performed the tasks during heat exposure than those when they performed the tasks in control condition (P < 0.05), while the subjects in tropical group did not show any differences in oxyhemoglobin during task performance between control and heating conditions. CONCLUSIONS: In addition to a better ability to maintain their homeostasis during heat exposure, tropical natives from Southeast Asia showed better resistance to performance loss during heat exposure in comparison with temperate natives from Japan. The tropical natives also showed smaller increase of oxyhemoglobin indicating less cognitive effort to maintain performance.