Cargando…
Mitochondrial Proteome Studies in Seeds during Germination
Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of st...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217346/ https://www.ncbi.nlm.nih.gov/pubmed/28248229 http://dx.doi.org/10.3390/proteomes4020019 |
_version_ | 1782492091092303872 |
---|---|
author | Czarna, Malgorzata Kolodziejczak, Marta Janska, Hanna |
author_facet | Czarna, Malgorzata Kolodziejczak, Marta Janska, Hanna |
author_sort | Czarna, Malgorzata |
collection | PubMed |
description | Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination. |
format | Online Article Text |
id | pubmed-5217346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-52173462017-02-27 Mitochondrial Proteome Studies in Seeds during Germination Czarna, Malgorzata Kolodziejczak, Marta Janska, Hanna Proteomes Review Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination. MDPI 2016-06-21 /pmc/articles/PMC5217346/ /pubmed/28248229 http://dx.doi.org/10.3390/proteomes4020019 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Czarna, Malgorzata Kolodziejczak, Marta Janska, Hanna Mitochondrial Proteome Studies in Seeds during Germination |
title | Mitochondrial Proteome Studies in Seeds during Germination |
title_full | Mitochondrial Proteome Studies in Seeds during Germination |
title_fullStr | Mitochondrial Proteome Studies in Seeds during Germination |
title_full_unstemmed | Mitochondrial Proteome Studies in Seeds during Germination |
title_short | Mitochondrial Proteome Studies in Seeds during Germination |
title_sort | mitochondrial proteome studies in seeds during germination |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217346/ https://www.ncbi.nlm.nih.gov/pubmed/28248229 http://dx.doi.org/10.3390/proteomes4020019 |
work_keys_str_mv | AT czarnamalgorzata mitochondrialproteomestudiesinseedsduringgermination AT kolodziejczakmarta mitochondrialproteomestudiesinseedsduringgermination AT janskahanna mitochondrialproteomestudiesinseedsduringgermination |