Cargando…
Coordinated regulation of acid resistance in Escherichia coli
BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, do...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217608/ https://www.ncbi.nlm.nih.gov/pubmed/28061857 http://dx.doi.org/10.1186/s12918-016-0376-y |
_version_ | 1782492141080018944 |
---|---|
author | Aquino, Patricia Honda, Brent Jaini, Suma Lyubetskaya, Anna Hosur, Krutika Chiu, Joanna G. Ekladious, Iriny Hu, Dongjian Jin, Lin Sayeg, Marianna K. Stettner, Arion I. Wang, Julia Wong, Brandon G. Wong, Winnie S. Alexander, Stephen L. Ba, Cong Bensussen, Seth I. Bernstein, David B. Braff, Dana Cha, Susie Cheng, Daniel I. Cho, Jang Hwan Chou, Kenny Chuang, James Gastler, Daniel E. Grasso, Daniel J. Greifenberger, John S. Guo, Chen Hawes, Anna K. Israni, Divya V. Jain, Saloni R. Kim, Jessica Lei, Junyu Li, Hao Li, David Li, Qian Mancuso, Christopher P. Mao, Ning Masud, Salwa F. Meisel, Cari L. Mi, Jing Nykyforchyn, Christine S. Park, Minhee Peterson, Hannah M. Ramirez, Alfred K. Reynolds, Daniel S. Rim, Nae Gyune Saffie, Jared C. Su, Hang Su, Wendell R. Su, Yaqing Sun, Meng Thommes, Meghan M. Tu, Tao Varongchayakul, Nitinun Wagner, Tyler E. Weinberg, Benjamin H. Yang, Rouhui Yaroslavsky, Anastasia Yoon, Christine Zhao, Yanyu Zollinger, Alicia J. Stringer, Anne M. Foster, John W. Wade, Joseph Raman, Sahadaven Broude, Natasha Wong, Wilson W. Galagan, James E. |
author_facet | Aquino, Patricia Honda, Brent Jaini, Suma Lyubetskaya, Anna Hosur, Krutika Chiu, Joanna G. Ekladious, Iriny Hu, Dongjian Jin, Lin Sayeg, Marianna K. Stettner, Arion I. Wang, Julia Wong, Brandon G. Wong, Winnie S. Alexander, Stephen L. Ba, Cong Bensussen, Seth I. Bernstein, David B. Braff, Dana Cha, Susie Cheng, Daniel I. Cho, Jang Hwan Chou, Kenny Chuang, James Gastler, Daniel E. Grasso, Daniel J. Greifenberger, John S. Guo, Chen Hawes, Anna K. Israni, Divya V. Jain, Saloni R. Kim, Jessica Lei, Junyu Li, Hao Li, David Li, Qian Mancuso, Christopher P. Mao, Ning Masud, Salwa F. Meisel, Cari L. Mi, Jing Nykyforchyn, Christine S. Park, Minhee Peterson, Hannah M. Ramirez, Alfred K. Reynolds, Daniel S. Rim, Nae Gyune Saffie, Jared C. Su, Hang Su, Wendell R. Su, Yaqing Sun, Meng Thommes, Meghan M. Tu, Tao Varongchayakul, Nitinun Wagner, Tyler E. Weinberg, Benjamin H. Yang, Rouhui Yaroslavsky, Anastasia Yoon, Christine Zhao, Yanyu Zollinger, Alicia J. Stringer, Anne M. Foster, John W. Wade, Joseph Raman, Sahadaven Broude, Natasha Wong, Wilson W. Galagan, James E. |
author_sort | Aquino, Patricia |
collection | PubMed |
description | BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5217608 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-52176082017-01-11 Coordinated regulation of acid resistance in Escherichia coli Aquino, Patricia Honda, Brent Jaini, Suma Lyubetskaya, Anna Hosur, Krutika Chiu, Joanna G. Ekladious, Iriny Hu, Dongjian Jin, Lin Sayeg, Marianna K. Stettner, Arion I. Wang, Julia Wong, Brandon G. Wong, Winnie S. Alexander, Stephen L. Ba, Cong Bensussen, Seth I. Bernstein, David B. Braff, Dana Cha, Susie Cheng, Daniel I. Cho, Jang Hwan Chou, Kenny Chuang, James Gastler, Daniel E. Grasso, Daniel J. Greifenberger, John S. Guo, Chen Hawes, Anna K. Israni, Divya V. Jain, Saloni R. Kim, Jessica Lei, Junyu Li, Hao Li, David Li, Qian Mancuso, Christopher P. Mao, Ning Masud, Salwa F. Meisel, Cari L. Mi, Jing Nykyforchyn, Christine S. Park, Minhee Peterson, Hannah M. Ramirez, Alfred K. Reynolds, Daniel S. Rim, Nae Gyune Saffie, Jared C. Su, Hang Su, Wendell R. Su, Yaqing Sun, Meng Thommes, Meghan M. Tu, Tao Varongchayakul, Nitinun Wagner, Tyler E. Weinberg, Benjamin H. Yang, Rouhui Yaroslavsky, Anastasia Yoon, Christine Zhao, Yanyu Zollinger, Alicia J. Stringer, Anne M. Foster, John W. Wade, Joseph Raman, Sahadaven Broude, Natasha Wong, Wilson W. Galagan, James E. BMC Syst Biol Research Article BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users. BioMed Central 2017-01-06 /pmc/articles/PMC5217608/ /pubmed/28061857 http://dx.doi.org/10.1186/s12918-016-0376-y Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Aquino, Patricia Honda, Brent Jaini, Suma Lyubetskaya, Anna Hosur, Krutika Chiu, Joanna G. Ekladious, Iriny Hu, Dongjian Jin, Lin Sayeg, Marianna K. Stettner, Arion I. Wang, Julia Wong, Brandon G. Wong, Winnie S. Alexander, Stephen L. Ba, Cong Bensussen, Seth I. Bernstein, David B. Braff, Dana Cha, Susie Cheng, Daniel I. Cho, Jang Hwan Chou, Kenny Chuang, James Gastler, Daniel E. Grasso, Daniel J. Greifenberger, John S. Guo, Chen Hawes, Anna K. Israni, Divya V. Jain, Saloni R. Kim, Jessica Lei, Junyu Li, Hao Li, David Li, Qian Mancuso, Christopher P. Mao, Ning Masud, Salwa F. Meisel, Cari L. Mi, Jing Nykyforchyn, Christine S. Park, Minhee Peterson, Hannah M. Ramirez, Alfred K. Reynolds, Daniel S. Rim, Nae Gyune Saffie, Jared C. Su, Hang Su, Wendell R. Su, Yaqing Sun, Meng Thommes, Meghan M. Tu, Tao Varongchayakul, Nitinun Wagner, Tyler E. Weinberg, Benjamin H. Yang, Rouhui Yaroslavsky, Anastasia Yoon, Christine Zhao, Yanyu Zollinger, Alicia J. Stringer, Anne M. Foster, John W. Wade, Joseph Raman, Sahadaven Broude, Natasha Wong, Wilson W. Galagan, James E. Coordinated regulation of acid resistance in Escherichia coli |
title | Coordinated regulation of acid resistance in Escherichia coli |
title_full | Coordinated regulation of acid resistance in Escherichia coli |
title_fullStr | Coordinated regulation of acid resistance in Escherichia coli |
title_full_unstemmed | Coordinated regulation of acid resistance in Escherichia coli |
title_short | Coordinated regulation of acid resistance in Escherichia coli |
title_sort | coordinated regulation of acid resistance in escherichia coli |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217608/ https://www.ncbi.nlm.nih.gov/pubmed/28061857 http://dx.doi.org/10.1186/s12918-016-0376-y |
work_keys_str_mv | AT aquinopatricia coordinatedregulationofacidresistanceinescherichiacoli AT hondabrent coordinatedregulationofacidresistanceinescherichiacoli AT jainisuma coordinatedregulationofacidresistanceinescherichiacoli AT lyubetskayaanna coordinatedregulationofacidresistanceinescherichiacoli AT hosurkrutika coordinatedregulationofacidresistanceinescherichiacoli AT chiujoannag coordinatedregulationofacidresistanceinescherichiacoli AT ekladiousiriny coordinatedregulationofacidresistanceinescherichiacoli AT hudongjian coordinatedregulationofacidresistanceinescherichiacoli AT jinlin coordinatedregulationofacidresistanceinescherichiacoli AT sayegmariannak coordinatedregulationofacidresistanceinescherichiacoli AT stettnerarioni coordinatedregulationofacidresistanceinescherichiacoli AT wangjulia coordinatedregulationofacidresistanceinescherichiacoli AT wongbrandong coordinatedregulationofacidresistanceinescherichiacoli AT wongwinnies coordinatedregulationofacidresistanceinescherichiacoli AT alexanderstephenl coordinatedregulationofacidresistanceinescherichiacoli AT bacong coordinatedregulationofacidresistanceinescherichiacoli AT bensussensethi coordinatedregulationofacidresistanceinescherichiacoli AT bernsteindavidb coordinatedregulationofacidresistanceinescherichiacoli AT braffdana coordinatedregulationofacidresistanceinescherichiacoli AT chasusie coordinatedregulationofacidresistanceinescherichiacoli AT chengdanieli coordinatedregulationofacidresistanceinescherichiacoli AT chojanghwan coordinatedregulationofacidresistanceinescherichiacoli AT choukenny coordinatedregulationofacidresistanceinescherichiacoli AT chuangjames coordinatedregulationofacidresistanceinescherichiacoli AT gastlerdaniele coordinatedregulationofacidresistanceinescherichiacoli AT grassodanielj coordinatedregulationofacidresistanceinescherichiacoli AT greifenbergerjohns coordinatedregulationofacidresistanceinescherichiacoli AT guochen coordinatedregulationofacidresistanceinescherichiacoli AT hawesannak coordinatedregulationofacidresistanceinescherichiacoli AT isranidivyav coordinatedregulationofacidresistanceinescherichiacoli AT jainsalonir coordinatedregulationofacidresistanceinescherichiacoli AT kimjessica coordinatedregulationofacidresistanceinescherichiacoli AT leijunyu coordinatedregulationofacidresistanceinescherichiacoli AT lihao coordinatedregulationofacidresistanceinescherichiacoli AT lidavid coordinatedregulationofacidresistanceinescherichiacoli AT liqian coordinatedregulationofacidresistanceinescherichiacoli AT mancusochristopherp coordinatedregulationofacidresistanceinescherichiacoli AT maoning coordinatedregulationofacidresistanceinescherichiacoli AT masudsalwaf coordinatedregulationofacidresistanceinescherichiacoli AT meiselcaril coordinatedregulationofacidresistanceinescherichiacoli AT mijing coordinatedregulationofacidresistanceinescherichiacoli AT nykyforchynchristines coordinatedregulationofacidresistanceinescherichiacoli AT parkminhee coordinatedregulationofacidresistanceinescherichiacoli AT petersonhannahm coordinatedregulationofacidresistanceinescherichiacoli AT ramirezalfredk coordinatedregulationofacidresistanceinescherichiacoli AT reynoldsdaniels coordinatedregulationofacidresistanceinescherichiacoli AT rimnaegyune coordinatedregulationofacidresistanceinescherichiacoli AT saffiejaredc coordinatedregulationofacidresistanceinescherichiacoli AT suhang coordinatedregulationofacidresistanceinescherichiacoli AT suwendellr coordinatedregulationofacidresistanceinescherichiacoli AT suyaqing coordinatedregulationofacidresistanceinescherichiacoli AT sunmeng coordinatedregulationofacidresistanceinescherichiacoli AT thommesmeghanm coordinatedregulationofacidresistanceinescherichiacoli AT tutao coordinatedregulationofacidresistanceinescherichiacoli AT varongchayakulnitinun coordinatedregulationofacidresistanceinescherichiacoli AT wagnertylere coordinatedregulationofacidresistanceinescherichiacoli AT weinbergbenjaminh coordinatedregulationofacidresistanceinescherichiacoli AT yangrouhui coordinatedregulationofacidresistanceinescherichiacoli AT yaroslavskyanastasia coordinatedregulationofacidresistanceinescherichiacoli AT yoonchristine coordinatedregulationofacidresistanceinescherichiacoli AT zhaoyanyu coordinatedregulationofacidresistanceinescherichiacoli AT zollingeraliciaj coordinatedregulationofacidresistanceinescherichiacoli AT stringerannem coordinatedregulationofacidresistanceinescherichiacoli AT fosterjohnw coordinatedregulationofacidresistanceinescherichiacoli AT wadejoseph coordinatedregulationofacidresistanceinescherichiacoli AT ramansahadaven coordinatedregulationofacidresistanceinescherichiacoli AT broudenatasha coordinatedregulationofacidresistanceinescherichiacoli AT wongwilsonw coordinatedregulationofacidresistanceinescherichiacoli AT galaganjamese coordinatedregulationofacidresistanceinescherichiacoli |