Cargando…

Coordinated regulation of acid resistance in Escherichia coli

BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, do...

Descripción completa

Detalles Bibliográficos
Autores principales: Aquino, Patricia, Honda, Brent, Jaini, Suma, Lyubetskaya, Anna, Hosur, Krutika, Chiu, Joanna G., Ekladious, Iriny, Hu, Dongjian, Jin, Lin, Sayeg, Marianna K., Stettner, Arion I., Wang, Julia, Wong, Brandon G., Wong, Winnie S., Alexander, Stephen L., Ba, Cong, Bensussen, Seth I., Bernstein, David B., Braff, Dana, Cha, Susie, Cheng, Daniel I., Cho, Jang Hwan, Chou, Kenny, Chuang, James, Gastler, Daniel E., Grasso, Daniel J., Greifenberger, John S., Guo, Chen, Hawes, Anna K., Israni, Divya V., Jain, Saloni R., Kim, Jessica, Lei, Junyu, Li, Hao, Li, David, Li, Qian, Mancuso, Christopher P., Mao, Ning, Masud, Salwa F., Meisel, Cari L., Mi, Jing, Nykyforchyn, Christine S., Park, Minhee, Peterson, Hannah M., Ramirez, Alfred K., Reynolds, Daniel S., Rim, Nae Gyune, Saffie, Jared C., Su, Hang, Su, Wendell R., Su, Yaqing, Sun, Meng, Thommes, Meghan M., Tu, Tao, Varongchayakul, Nitinun, Wagner, Tyler E., Weinberg, Benjamin H., Yang, Rouhui, Yaroslavsky, Anastasia, Yoon, Christine, Zhao, Yanyu, Zollinger, Alicia J., Stringer, Anne M., Foster, John W., Wade, Joseph, Raman, Sahadaven, Broude, Natasha, Wong, Wilson W., Galagan, James E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217608/
https://www.ncbi.nlm.nih.gov/pubmed/28061857
http://dx.doi.org/10.1186/s12918-016-0376-y
_version_ 1782492141080018944
author Aquino, Patricia
Honda, Brent
Jaini, Suma
Lyubetskaya, Anna
Hosur, Krutika
Chiu, Joanna G.
Ekladious, Iriny
Hu, Dongjian
Jin, Lin
Sayeg, Marianna K.
Stettner, Arion I.
Wang, Julia
Wong, Brandon G.
Wong, Winnie S.
Alexander, Stephen L.
Ba, Cong
Bensussen, Seth I.
Bernstein, David B.
Braff, Dana
Cha, Susie
Cheng, Daniel I.
Cho, Jang Hwan
Chou, Kenny
Chuang, James
Gastler, Daniel E.
Grasso, Daniel J.
Greifenberger, John S.
Guo, Chen
Hawes, Anna K.
Israni, Divya V.
Jain, Saloni R.
Kim, Jessica
Lei, Junyu
Li, Hao
Li, David
Li, Qian
Mancuso, Christopher P.
Mao, Ning
Masud, Salwa F.
Meisel, Cari L.
Mi, Jing
Nykyforchyn, Christine S.
Park, Minhee
Peterson, Hannah M.
Ramirez, Alfred K.
Reynolds, Daniel S.
Rim, Nae Gyune
Saffie, Jared C.
Su, Hang
Su, Wendell R.
Su, Yaqing
Sun, Meng
Thommes, Meghan M.
Tu, Tao
Varongchayakul, Nitinun
Wagner, Tyler E.
Weinberg, Benjamin H.
Yang, Rouhui
Yaroslavsky, Anastasia
Yoon, Christine
Zhao, Yanyu
Zollinger, Alicia J.
Stringer, Anne M.
Foster, John W.
Wade, Joseph
Raman, Sahadaven
Broude, Natasha
Wong, Wilson W.
Galagan, James E.
author_facet Aquino, Patricia
Honda, Brent
Jaini, Suma
Lyubetskaya, Anna
Hosur, Krutika
Chiu, Joanna G.
Ekladious, Iriny
Hu, Dongjian
Jin, Lin
Sayeg, Marianna K.
Stettner, Arion I.
Wang, Julia
Wong, Brandon G.
Wong, Winnie S.
Alexander, Stephen L.
Ba, Cong
Bensussen, Seth I.
Bernstein, David B.
Braff, Dana
Cha, Susie
Cheng, Daniel I.
Cho, Jang Hwan
Chou, Kenny
Chuang, James
Gastler, Daniel E.
Grasso, Daniel J.
Greifenberger, John S.
Guo, Chen
Hawes, Anna K.
Israni, Divya V.
Jain, Saloni R.
Kim, Jessica
Lei, Junyu
Li, Hao
Li, David
Li, Qian
Mancuso, Christopher P.
Mao, Ning
Masud, Salwa F.
Meisel, Cari L.
Mi, Jing
Nykyforchyn, Christine S.
Park, Minhee
Peterson, Hannah M.
Ramirez, Alfred K.
Reynolds, Daniel S.
Rim, Nae Gyune
Saffie, Jared C.
Su, Hang
Su, Wendell R.
Su, Yaqing
Sun, Meng
Thommes, Meghan M.
Tu, Tao
Varongchayakul, Nitinun
Wagner, Tyler E.
Weinberg, Benjamin H.
Yang, Rouhui
Yaroslavsky, Anastasia
Yoon, Christine
Zhao, Yanyu
Zollinger, Alicia J.
Stringer, Anne M.
Foster, John W.
Wade, Joseph
Raman, Sahadaven
Broude, Natasha
Wong, Wilson W.
Galagan, James E.
author_sort Aquino, Patricia
collection PubMed
description BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5217608
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-52176082017-01-11 Coordinated regulation of acid resistance in Escherichia coli Aquino, Patricia Honda, Brent Jaini, Suma Lyubetskaya, Anna Hosur, Krutika Chiu, Joanna G. Ekladious, Iriny Hu, Dongjian Jin, Lin Sayeg, Marianna K. Stettner, Arion I. Wang, Julia Wong, Brandon G. Wong, Winnie S. Alexander, Stephen L. Ba, Cong Bensussen, Seth I. Bernstein, David B. Braff, Dana Cha, Susie Cheng, Daniel I. Cho, Jang Hwan Chou, Kenny Chuang, James Gastler, Daniel E. Grasso, Daniel J. Greifenberger, John S. Guo, Chen Hawes, Anna K. Israni, Divya V. Jain, Saloni R. Kim, Jessica Lei, Junyu Li, Hao Li, David Li, Qian Mancuso, Christopher P. Mao, Ning Masud, Salwa F. Meisel, Cari L. Mi, Jing Nykyforchyn, Christine S. Park, Minhee Peterson, Hannah M. Ramirez, Alfred K. Reynolds, Daniel S. Rim, Nae Gyune Saffie, Jared C. Su, Hang Su, Wendell R. Su, Yaqing Sun, Meng Thommes, Meghan M. Tu, Tao Varongchayakul, Nitinun Wagner, Tyler E. Weinberg, Benjamin H. Yang, Rouhui Yaroslavsky, Anastasia Yoon, Christine Zhao, Yanyu Zollinger, Alicia J. Stringer, Anne M. Foster, John W. Wade, Joseph Raman, Sahadaven Broude, Natasha Wong, Wilson W. Galagan, James E. BMC Syst Biol Research Article BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users. BioMed Central 2017-01-06 /pmc/articles/PMC5217608/ /pubmed/28061857 http://dx.doi.org/10.1186/s12918-016-0376-y Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Aquino, Patricia
Honda, Brent
Jaini, Suma
Lyubetskaya, Anna
Hosur, Krutika
Chiu, Joanna G.
Ekladious, Iriny
Hu, Dongjian
Jin, Lin
Sayeg, Marianna K.
Stettner, Arion I.
Wang, Julia
Wong, Brandon G.
Wong, Winnie S.
Alexander, Stephen L.
Ba, Cong
Bensussen, Seth I.
Bernstein, David B.
Braff, Dana
Cha, Susie
Cheng, Daniel I.
Cho, Jang Hwan
Chou, Kenny
Chuang, James
Gastler, Daniel E.
Grasso, Daniel J.
Greifenberger, John S.
Guo, Chen
Hawes, Anna K.
Israni, Divya V.
Jain, Saloni R.
Kim, Jessica
Lei, Junyu
Li, Hao
Li, David
Li, Qian
Mancuso, Christopher P.
Mao, Ning
Masud, Salwa F.
Meisel, Cari L.
Mi, Jing
Nykyforchyn, Christine S.
Park, Minhee
Peterson, Hannah M.
Ramirez, Alfred K.
Reynolds, Daniel S.
Rim, Nae Gyune
Saffie, Jared C.
Su, Hang
Su, Wendell R.
Su, Yaqing
Sun, Meng
Thommes, Meghan M.
Tu, Tao
Varongchayakul, Nitinun
Wagner, Tyler E.
Weinberg, Benjamin H.
Yang, Rouhui
Yaroslavsky, Anastasia
Yoon, Christine
Zhao, Yanyu
Zollinger, Alicia J.
Stringer, Anne M.
Foster, John W.
Wade, Joseph
Raman, Sahadaven
Broude, Natasha
Wong, Wilson W.
Galagan, James E.
Coordinated regulation of acid resistance in Escherichia coli
title Coordinated regulation of acid resistance in Escherichia coli
title_full Coordinated regulation of acid resistance in Escherichia coli
title_fullStr Coordinated regulation of acid resistance in Escherichia coli
title_full_unstemmed Coordinated regulation of acid resistance in Escherichia coli
title_short Coordinated regulation of acid resistance in Escherichia coli
title_sort coordinated regulation of acid resistance in escherichia coli
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217608/
https://www.ncbi.nlm.nih.gov/pubmed/28061857
http://dx.doi.org/10.1186/s12918-016-0376-y
work_keys_str_mv AT aquinopatricia coordinatedregulationofacidresistanceinescherichiacoli
AT hondabrent coordinatedregulationofacidresistanceinescherichiacoli
AT jainisuma coordinatedregulationofacidresistanceinescherichiacoli
AT lyubetskayaanna coordinatedregulationofacidresistanceinescherichiacoli
AT hosurkrutika coordinatedregulationofacidresistanceinescherichiacoli
AT chiujoannag coordinatedregulationofacidresistanceinescherichiacoli
AT ekladiousiriny coordinatedregulationofacidresistanceinescherichiacoli
AT hudongjian coordinatedregulationofacidresistanceinescherichiacoli
AT jinlin coordinatedregulationofacidresistanceinescherichiacoli
AT sayegmariannak coordinatedregulationofacidresistanceinescherichiacoli
AT stettnerarioni coordinatedregulationofacidresistanceinescherichiacoli
AT wangjulia coordinatedregulationofacidresistanceinescherichiacoli
AT wongbrandong coordinatedregulationofacidresistanceinescherichiacoli
AT wongwinnies coordinatedregulationofacidresistanceinescherichiacoli
AT alexanderstephenl coordinatedregulationofacidresistanceinescherichiacoli
AT bacong coordinatedregulationofacidresistanceinescherichiacoli
AT bensussensethi coordinatedregulationofacidresistanceinescherichiacoli
AT bernsteindavidb coordinatedregulationofacidresistanceinescherichiacoli
AT braffdana coordinatedregulationofacidresistanceinescherichiacoli
AT chasusie coordinatedregulationofacidresistanceinescherichiacoli
AT chengdanieli coordinatedregulationofacidresistanceinescherichiacoli
AT chojanghwan coordinatedregulationofacidresistanceinescherichiacoli
AT choukenny coordinatedregulationofacidresistanceinescherichiacoli
AT chuangjames coordinatedregulationofacidresistanceinescherichiacoli
AT gastlerdaniele coordinatedregulationofacidresistanceinescherichiacoli
AT grassodanielj coordinatedregulationofacidresistanceinescherichiacoli
AT greifenbergerjohns coordinatedregulationofacidresistanceinescherichiacoli
AT guochen coordinatedregulationofacidresistanceinescherichiacoli
AT hawesannak coordinatedregulationofacidresistanceinescherichiacoli
AT isranidivyav coordinatedregulationofacidresistanceinescherichiacoli
AT jainsalonir coordinatedregulationofacidresistanceinescherichiacoli
AT kimjessica coordinatedregulationofacidresistanceinescherichiacoli
AT leijunyu coordinatedregulationofacidresistanceinescherichiacoli
AT lihao coordinatedregulationofacidresistanceinescherichiacoli
AT lidavid coordinatedregulationofacidresistanceinescherichiacoli
AT liqian coordinatedregulationofacidresistanceinescherichiacoli
AT mancusochristopherp coordinatedregulationofacidresistanceinescherichiacoli
AT maoning coordinatedregulationofacidresistanceinescherichiacoli
AT masudsalwaf coordinatedregulationofacidresistanceinescherichiacoli
AT meiselcaril coordinatedregulationofacidresistanceinescherichiacoli
AT mijing coordinatedregulationofacidresistanceinescherichiacoli
AT nykyforchynchristines coordinatedregulationofacidresistanceinescherichiacoli
AT parkminhee coordinatedregulationofacidresistanceinescherichiacoli
AT petersonhannahm coordinatedregulationofacidresistanceinescherichiacoli
AT ramirezalfredk coordinatedregulationofacidresistanceinescherichiacoli
AT reynoldsdaniels coordinatedregulationofacidresistanceinescherichiacoli
AT rimnaegyune coordinatedregulationofacidresistanceinescherichiacoli
AT saffiejaredc coordinatedregulationofacidresistanceinescherichiacoli
AT suhang coordinatedregulationofacidresistanceinescherichiacoli
AT suwendellr coordinatedregulationofacidresistanceinescherichiacoli
AT suyaqing coordinatedregulationofacidresistanceinescherichiacoli
AT sunmeng coordinatedregulationofacidresistanceinescherichiacoli
AT thommesmeghanm coordinatedregulationofacidresistanceinescherichiacoli
AT tutao coordinatedregulationofacidresistanceinescherichiacoli
AT varongchayakulnitinun coordinatedregulationofacidresistanceinescherichiacoli
AT wagnertylere coordinatedregulationofacidresistanceinescherichiacoli
AT weinbergbenjaminh coordinatedregulationofacidresistanceinescherichiacoli
AT yangrouhui coordinatedregulationofacidresistanceinescherichiacoli
AT yaroslavskyanastasia coordinatedregulationofacidresistanceinescherichiacoli
AT yoonchristine coordinatedregulationofacidresistanceinescherichiacoli
AT zhaoyanyu coordinatedregulationofacidresistanceinescherichiacoli
AT zollingeraliciaj coordinatedregulationofacidresistanceinescherichiacoli
AT stringerannem coordinatedregulationofacidresistanceinescherichiacoli
AT fosterjohnw coordinatedregulationofacidresistanceinescherichiacoli
AT wadejoseph coordinatedregulationofacidresistanceinescherichiacoli
AT ramansahadaven coordinatedregulationofacidresistanceinescherichiacoli
AT broudenatasha coordinatedregulationofacidresistanceinescherichiacoli
AT wongwilsonw coordinatedregulationofacidresistanceinescherichiacoli
AT galaganjamese coordinatedregulationofacidresistanceinescherichiacoli