Cargando…
Comparison of patients with early-phase arrhythmogenic right ventricular cardiomyopathy and right ventricular outflow tract ventricular tachycardia
AIMS: Differentiation between early-phase arrhythmogenic right ventricular cardiomyopathy (ARVC) and right ventricular outflow tract (RVOT)-ventricular tachycardia (VT) can be challenging, and correct diagnosis is important. We compared electrocardiogram (ECG) parameters and morphological right vent...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217739/ https://www.ncbi.nlm.nih.gov/pubmed/26903598 http://dx.doi.org/10.1093/ehjci/jew014 |
Sumario: | AIMS: Differentiation between early-phase arrhythmogenic right ventricular cardiomyopathy (ARVC) and right ventricular outflow tract (RVOT)-ventricular tachycardia (VT) can be challenging, and correct diagnosis is important. We compared electrocardiogram (ECG) parameters and morphological right ventricular (RV) abnormalities and investigated if ECG and cardiac imaging can help to discriminate early-phase ARVC from RVOT-VT patients. METHODS AND RESULTS: We included 44 consecutive RVOT-VT (47 ± 14 years) and 121 ARVC patients (42 ± 17 years). Of the ARVC patients, 77 had definite ARVC and 44 had early-phase ARVC disease. All underwent clinical examination, ECG, and Holter monitoring. Frequency of premature ventricular complexes (PVC) was expressed as percent per total beats/24 h (%PVC), and PVC configuration was recorded. By echocardiography, we assessed indexed RV basal diameter (RVD), indexed RVOT diameter, and RV and left ventricular (LV) function. RV mechanical dispersion (RVMD), reflecting RV contraction heterogeneity, was assessed by speckle-tracking strain echocardiography. RV ejection fraction (RVEF) was assessed by cardiac magnetic resonance imaging (CMR). Patients with early-phase ARVC had lower %PVC by Holter and PVC more frequently originated from the RV lateral free wall (both P < 0.001). RVD was larger (21 ± 3 vs. 19 ± 2 mm, P < 0.01), RVMD was more pronounced (22 ± 15 vs. 15 ± 13 ms, P = 0.03), and RVEF by CMR was decreased (41 ± 8 vs. 49 ± 4%, P < 0.001) in early-phase ARVC vs. RVOT-VT patients. CONCLUSION: Patients with early-phase ARVC had structural abnormalities with lower RVEF, increased RVD, and pronounced RVMD in addition to lower %PVC by Holter compared with RVOT-VT patients. These parameters can help correct diagnosis in patients with unclear phenotypes. |
---|