Cargando…
Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma
Lung cancer is the most common cause of cancer-related deaths in the USA. It can be detected and diagnosed using computed tomography images. For an automated classifier, identifying predictive features from medical images is a key concern. Deep feature extraction using pretrained convolutional neura...
Autores principales: | Paul, Rahul, Hawkins, Samuel H., Balagurunathan, Yoganand, Schabath, Matthew B., Gillies, Robert J., Hall, Lawrence O., Goldgof, Dmitry B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5218828/ https://www.ncbi.nlm.nih.gov/pubmed/28066809 http://dx.doi.org/10.18383/j.tom.2016.00211 |
Ejemplares similares
-
Explaining Deep Features Using Radiologist-Defined Semantic Features and Traditional Quantitative Features
por: Paul, Rahul, et al.
Publicado: (2019) -
Delta radiomic features improve prediction for lung cancer incidence: A nested case–control analysis of the National Lung Screening Trial
por: Cherezov, Dmitry, et al.
Publicado: (2018) -
Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules
por: Balagurunathan, Yoganand, et al.
Publicado: (2019) -
Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients
por: Tunali, Ilke, et al.
Publicado: (2017) -
Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening
por: Pérez-Morales, Jaileene, et al.
Publicado: (2020)