Cargando…
Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system
Lutibacter profundi LP1(T) within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1(T) is the first genome to be published within the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5219744/ https://www.ncbi.nlm.nih.gov/pubmed/28078050 http://dx.doi.org/10.1186/s40793-016-0219-x |
_version_ | 1782492515061989376 |
---|---|
author | Wissuwa, Juliane Bauer, Sven Le Moine Steen, Ida Helene Stokke, Runar |
author_facet | Wissuwa, Juliane Bauer, Sven Le Moine Steen, Ida Helene Stokke, Runar |
author_sort | Wissuwa, Juliane |
collection | PubMed |
description | Lutibacter profundi LP1(T) within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1(T) is the first genome to be published within the genus Lutibacter. L. profundi LP1(T) consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1(T) utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. A substantial number of genes encoding for extracellular polysaccharide synthesis pathways, curli fibres and attachment to surfaces could mediate adhesion in the biofilm and may contribute to the biofilm formation. In addition to aerobic respiration, the complete denitrification pathway and genes for sulphide oxidation e.g. sulphide:quinone reductase are present in the genome. sulphide:quinone reductase and denitrification may serve as detoxification systems allowing L. profundi LP1(T) to thrive in a sulphide and nitrate enriched environment. The information gained from the genome gives a greater insight in the functional role of L. profundi LP1(T) in the biofilm and its adaption strategy in an extreme environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40793-016-0219-x) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5219744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-52197442017-01-11 Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system Wissuwa, Juliane Bauer, Sven Le Moine Steen, Ida Helene Stokke, Runar Stand Genomic Sci Short Genome Report Lutibacter profundi LP1(T) within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1(T) is the first genome to be published within the genus Lutibacter. L. profundi LP1(T) consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1(T) utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. A substantial number of genes encoding for extracellular polysaccharide synthesis pathways, curli fibres and attachment to surfaces could mediate adhesion in the biofilm and may contribute to the biofilm formation. In addition to aerobic respiration, the complete denitrification pathway and genes for sulphide oxidation e.g. sulphide:quinone reductase are present in the genome. sulphide:quinone reductase and denitrification may serve as detoxification systems allowing L. profundi LP1(T) to thrive in a sulphide and nitrate enriched environment. The information gained from the genome gives a greater insight in the functional role of L. profundi LP1(T) in the biofilm and its adaption strategy in an extreme environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40793-016-0219-x) contains supplementary material, which is available to authorized users. BioMed Central 2017-01-07 /pmc/articles/PMC5219744/ /pubmed/28078050 http://dx.doi.org/10.1186/s40793-016-0219-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Short Genome Report Wissuwa, Juliane Bauer, Sven Le Moine Steen, Ida Helene Stokke, Runar Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system |
title | Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system |
title_full | Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system |
title_fullStr | Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system |
title_full_unstemmed | Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system |
title_short | Complete genome sequence of Lutibacter profundi LP1(T) isolated from an Arctic deep-sea hydrothermal vent system |
title_sort | complete genome sequence of lutibacter profundi lp1(t) isolated from an arctic deep-sea hydrothermal vent system |
topic | Short Genome Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5219744/ https://www.ncbi.nlm.nih.gov/pubmed/28078050 http://dx.doi.org/10.1186/s40793-016-0219-x |
work_keys_str_mv | AT wissuwajuliane completegenomesequenceoflutibacterprofundilp1tisolatedfromanarcticdeepseahydrothermalventsystem AT bauersvenlemoine completegenomesequenceoflutibacterprofundilp1tisolatedfromanarcticdeepseahydrothermalventsystem AT steenidahelene completegenomesequenceoflutibacterprofundilp1tisolatedfromanarcticdeepseahydrothermalventsystem AT stokkerunar completegenomesequenceoflutibacterprofundilp1tisolatedfromanarcticdeepseahydrothermalventsystem |