Cargando…

Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor unit...

Descripción completa

Detalles Bibliográficos
Autores principales: Mosole, Simone, Carraro, Ugo, Kern, Helmut, Loefler, Stefan, Zampieri, Sandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220213/
https://www.ncbi.nlm.nih.gov/pubmed/28078066
http://dx.doi.org/10.4081/ejtm.2016.5972
_version_ 1782492582616498176
author Mosole, Simone
Carraro, Ugo
Kern, Helmut
Loefler, Stefan
Zampieri, Sandra
author_facet Mosole, Simone
Carraro, Ugo
Kern, Helmut
Loefler, Stefan
Zampieri, Sandra
author_sort Mosole, Simone
collection PubMed
description Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. Trial Registration: ClinicalTrials.gov: NCT01679977
format Online
Article
Text
id pubmed-5220213
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher PAGEPress Publications, Pavia, Italy
record_format MEDLINE/PubMed
spelling pubmed-52202132017-01-11 Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen Mosole, Simone Carraro, Ugo Kern, Helmut Loefler, Stefan Zampieri, Sandra Eur J Transl Myol Myology Made in Italy Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. Trial Registration: ClinicalTrials.gov: NCT01679977 PAGEPress Publications, Pavia, Italy 2016-11-25 /pmc/articles/PMC5220213/ /pubmed/28078066 http://dx.doi.org/10.4081/ejtm.2016.5972 Text en http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Myology Made in Italy
Mosole, Simone
Carraro, Ugo
Kern, Helmut
Loefler, Stefan
Zampieri, Sandra
Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen
title Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen
title_full Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen
title_fullStr Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen
title_full_unstemmed Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen
title_short Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen
title_sort use it or lose it: tonic activity of slow motoneurons promotes their survival and preferentially increases slow fiber-type groupings in muscles of old lifelong recreational sportsmen
topic Myology Made in Italy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220213/
https://www.ncbi.nlm.nih.gov/pubmed/28078066
http://dx.doi.org/10.4081/ejtm.2016.5972
work_keys_str_mv AT mosolesimone useitorloseittonicactivityofslowmotoneuronspromotestheirsurvivalandpreferentiallyincreasesslowfibertypegroupingsinmusclesofoldlifelongrecreationalsportsmen
AT carrarougo useitorloseittonicactivityofslowmotoneuronspromotestheirsurvivalandpreferentiallyincreasesslowfibertypegroupingsinmusclesofoldlifelongrecreationalsportsmen
AT kernhelmut useitorloseittonicactivityofslowmotoneuronspromotestheirsurvivalandpreferentiallyincreasesslowfibertypegroupingsinmusclesofoldlifelongrecreationalsportsmen
AT loeflerstefan useitorloseittonicactivityofslowmotoneuronspromotestheirsurvivalandpreferentiallyincreasesslowfibertypegroupingsinmusclesofoldlifelongrecreationalsportsmen
AT zampierisandra useitorloseittonicactivityofslowmotoneuronspromotestheirsurvivalandpreferentiallyincreasesslowfibertypegroupingsinmusclesofoldlifelongrecreationalsportsmen