Cargando…

DynOmics to identify delays and co-expression patterns across time course experiments

Dynamic changes in biological systems can be captured by measuring molecular expression from different levels (e.g., genes and proteins) across time. Integration of such data aims to identify molecules that show similar expression changes over time; such molecules may be co-regulated and thus involv...

Descripción completa

Detalles Bibliográficos
Autores principales: Straube, Jasmin, Huang, Bevan Emma, Cao, Kim-Anh Lê
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220332/
https://www.ncbi.nlm.nih.gov/pubmed/28065937
http://dx.doi.org/10.1038/srep40131
Descripción
Sumario:Dynamic changes in biological systems can be captured by measuring molecular expression from different levels (e.g., genes and proteins) across time. Integration of such data aims to identify molecules that show similar expression changes over time; such molecules may be co-regulated and thus involved in similar biological processes. Combining data sources presents a systematic approach to study molecular behaviour. It can compensate for missing data in one source, and can reduce false positives when multiple sources highlight the same pathways. However, integrative approaches must accommodate the challenges inherent in ‘omics’ data, including high-dimensionality, noise, and timing differences in expression. As current methods for identification of co-expression cannot cope with this level of complexity, we developed a novel algorithm called DynOmics. DynOmics is based on the fast Fourier transform, from which the difference in expression initiation between trajectories can be estimated. This delay can then be used to realign the trajectories and identify those which show a high degree of correlation. Through extensive simulations, we demonstrate that DynOmics is efficient and accurate compared to existing approaches. We consider two case studies highlighting its application, identifying regulatory relationships across ‘omics’ data within an organism and for comparative gene expression analysis across organisms.