Cargando…
DynOmics to identify delays and co-expression patterns across time course experiments
Dynamic changes in biological systems can be captured by measuring molecular expression from different levels (e.g., genes and proteins) across time. Integration of such data aims to identify molecules that show similar expression changes over time; such molecules may be co-regulated and thus involv...
Autores principales: | Straube, Jasmin, Huang, Bevan Emma, Cao, Kim-Anh Lê |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220332/ https://www.ncbi.nlm.nih.gov/pubmed/28065937 http://dx.doi.org/10.1038/srep40131 |
Ejemplares similares
-
DynOmics: dynamics of structural proteome and beyond
por: Li, Hongchun, et al.
Publicado: (2017) -
A Linear Mixed Model Spline Framework for Analysing Time Course ‘Omics’ Data
por: Straube, Jasmin, et al.
Publicado: (2015) -
Dynomics: A Novel and Promising Approach for Improved Breast Cancer Prognosis Prediction
por: Inglese, Marianna, et al.
Publicado: (2023) -
dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data
por: Huynh-Thu, Vân Anh, et al.
Publicado: (2018) -
DynPeak: An Algorithm for Pulse Detection and Frequency Analysis in Hormonal Time Series
por: Vidal, Alexandre, et al.
Publicado: (2012)