Cargando…
Energy Ordering of Molecular Orbitals
[Image: see text] Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the rea...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220489/ https://www.ncbi.nlm.nih.gov/pubmed/27935313 http://dx.doi.org/10.1021/acs.jpclett.6b02517 |
_version_ | 1782492638865260544 |
---|---|
author | Puschnig, P. Boese, A. D. Willenbockel, M. Meyer, M. Lüftner, D. Reinisch, E. M. Ules, T. Koller, G. Soubatch, S. Ramsey, M. G. Tautz, F. S. |
author_facet | Puschnig, P. Boese, A. D. Willenbockel, M. Meyer, M. Lüftner, D. Reinisch, E. M. Ules, T. Koller, G. Soubatch, S. Ramsey, M. G. Tautz, F. S. |
author_sort | Puschnig, P. |
collection | PubMed |
description | [Image: see text] Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations. |
format | Online Article Text |
id | pubmed-5220489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-52204892017-01-10 Energy Ordering of Molecular Orbitals Puschnig, P. Boese, A. D. Willenbockel, M. Meyer, M. Lüftner, D. Reinisch, E. M. Ules, T. Koller, G. Soubatch, S. Ramsey, M. G. Tautz, F. S. J Phys Chem Lett [Image: see text] Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations. American Chemical Society 2016-12-09 2017-01-05 /pmc/articles/PMC5220489/ /pubmed/27935313 http://dx.doi.org/10.1021/acs.jpclett.6b02517 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Puschnig, P. Boese, A. D. Willenbockel, M. Meyer, M. Lüftner, D. Reinisch, E. M. Ules, T. Koller, G. Soubatch, S. Ramsey, M. G. Tautz, F. S. Energy Ordering of Molecular Orbitals |
title | Energy Ordering of Molecular Orbitals |
title_full | Energy Ordering of Molecular Orbitals |
title_fullStr | Energy Ordering of Molecular Orbitals |
title_full_unstemmed | Energy Ordering of Molecular Orbitals |
title_short | Energy Ordering of Molecular Orbitals |
title_sort | energy ordering of molecular orbitals |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220489/ https://www.ncbi.nlm.nih.gov/pubmed/27935313 http://dx.doi.org/10.1021/acs.jpclett.6b02517 |
work_keys_str_mv | AT puschnigp energyorderingofmolecularorbitals AT boesead energyorderingofmolecularorbitals AT willenbockelm energyorderingofmolecularorbitals AT meyerm energyorderingofmolecularorbitals AT luftnerd energyorderingofmolecularorbitals AT reinischem energyorderingofmolecularorbitals AT ulest energyorderingofmolecularorbitals AT kollerg energyorderingofmolecularorbitals AT soubatchs energyorderingofmolecularorbitals AT ramseymg energyorderingofmolecularorbitals AT tautzfs energyorderingofmolecularorbitals |