Cargando…

Energy Ordering of Molecular Orbitals

[Image: see text] Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the rea...

Descripción completa

Detalles Bibliográficos
Autores principales: Puschnig, P., Boese, A. D., Willenbockel, M., Meyer, M., Lüftner, D., Reinisch, E. M., Ules, T., Koller, G., Soubatch, S., Ramsey, M. G., Tautz, F. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220489/
https://www.ncbi.nlm.nih.gov/pubmed/27935313
http://dx.doi.org/10.1021/acs.jpclett.6b02517
_version_ 1782492638865260544
author Puschnig, P.
Boese, A. D.
Willenbockel, M.
Meyer, M.
Lüftner, D.
Reinisch, E. M.
Ules, T.
Koller, G.
Soubatch, S.
Ramsey, M. G.
Tautz, F. S.
author_facet Puschnig, P.
Boese, A. D.
Willenbockel, M.
Meyer, M.
Lüftner, D.
Reinisch, E. M.
Ules, T.
Koller, G.
Soubatch, S.
Ramsey, M. G.
Tautz, F. S.
author_sort Puschnig, P.
collection PubMed
description [Image: see text] Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.
format Online
Article
Text
id pubmed-5220489
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-52204892017-01-10 Energy Ordering of Molecular Orbitals Puschnig, P. Boese, A. D. Willenbockel, M. Meyer, M. Lüftner, D. Reinisch, E. M. Ules, T. Koller, G. Soubatch, S. Ramsey, M. G. Tautz, F. S. J Phys Chem Lett [Image: see text] Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations. American Chemical Society 2016-12-09 2017-01-05 /pmc/articles/PMC5220489/ /pubmed/27935313 http://dx.doi.org/10.1021/acs.jpclett.6b02517 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Puschnig, P.
Boese, A. D.
Willenbockel, M.
Meyer, M.
Lüftner, D.
Reinisch, E. M.
Ules, T.
Koller, G.
Soubatch, S.
Ramsey, M. G.
Tautz, F. S.
Energy Ordering of Molecular Orbitals
title Energy Ordering of Molecular Orbitals
title_full Energy Ordering of Molecular Orbitals
title_fullStr Energy Ordering of Molecular Orbitals
title_full_unstemmed Energy Ordering of Molecular Orbitals
title_short Energy Ordering of Molecular Orbitals
title_sort energy ordering of molecular orbitals
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220489/
https://www.ncbi.nlm.nih.gov/pubmed/27935313
http://dx.doi.org/10.1021/acs.jpclett.6b02517
work_keys_str_mv AT puschnigp energyorderingofmolecularorbitals
AT boesead energyorderingofmolecularorbitals
AT willenbockelm energyorderingofmolecularorbitals
AT meyerm energyorderingofmolecularorbitals
AT luftnerd energyorderingofmolecularorbitals
AT reinischem energyorderingofmolecularorbitals
AT ulest energyorderingofmolecularorbitals
AT kollerg energyorderingofmolecularorbitals
AT soubatchs energyorderingofmolecularorbitals
AT ramseymg energyorderingofmolecularorbitals
AT tautzfs energyorderingofmolecularorbitals