Cargando…
Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method
Free iron is one of the major analytical items for soil basic properties. It is also an important indicator for understanding the genesis of soil, soil classification, and soil distribution behavior. In this study, an alternative analytical method (chemisorption) based on thermodynamic knowledge was...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221344/ https://www.ncbi.nlm.nih.gov/pubmed/28116218 http://dx.doi.org/10.1155/2016/7213542 |
_version_ | 1782492791605035008 |
---|---|
author | Fan, Shui-Sheng Chang, Feng-Hsiang Hsueh, Hsin-Ta Ko, Tzu-Hsing |
author_facet | Fan, Shui-Sheng Chang, Feng-Hsiang Hsueh, Hsin-Ta Ko, Tzu-Hsing |
author_sort | Fan, Shui-Sheng |
collection | PubMed |
description | Free iron is one of the major analytical items for soil basic properties. It is also an important indicator for understanding the genesis of soil, soil classification, and soil distribution behavior. In this study, an alternative analytical method (chemisorption) based on thermodynamic knowledge was proposed for measurement of total free iron oxides in soils. Several representative soil samples belonging to alfisols, ultisols, inceptisols, and entisols were collected from Taiwan and tested by the chemisorption, and the estimated total free iron oxides were compared with those measured from the traditional citrate bicarbonate dithionite (CBD) method. Experimental results showed that the optimal operating temperature was found to be at 773 K and the carbon monoxide (CO) is the best gaseous reagent to promote the formation of FeS. The estimated total free iron oxides for soil samples determined from the chemisorption in the presence of CO were very close to those from the CBD technique. The result of regression indicates that the estimated total free iron is strongly correlated with the CBD-Fe content (R(2) = 0.999) in the presence of CO. |
format | Online Article Text |
id | pubmed-5221344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-52213442017-01-23 Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method Fan, Shui-Sheng Chang, Feng-Hsiang Hsueh, Hsin-Ta Ko, Tzu-Hsing J Anal Methods Chem Research Article Free iron is one of the major analytical items for soil basic properties. It is also an important indicator for understanding the genesis of soil, soil classification, and soil distribution behavior. In this study, an alternative analytical method (chemisorption) based on thermodynamic knowledge was proposed for measurement of total free iron oxides in soils. Several representative soil samples belonging to alfisols, ultisols, inceptisols, and entisols were collected from Taiwan and tested by the chemisorption, and the estimated total free iron oxides were compared with those measured from the traditional citrate bicarbonate dithionite (CBD) method. Experimental results showed that the optimal operating temperature was found to be at 773 K and the carbon monoxide (CO) is the best gaseous reagent to promote the formation of FeS. The estimated total free iron oxides for soil samples determined from the chemisorption in the presence of CO were very close to those from the CBD technique. The result of regression indicates that the estimated total free iron is strongly correlated with the CBD-Fe content (R(2) = 0.999) in the presence of CO. Hindawi Publishing Corporation 2016 2016-12-25 /pmc/articles/PMC5221344/ /pubmed/28116218 http://dx.doi.org/10.1155/2016/7213542 Text en Copyright © 2016 Shui-Sheng Fan et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fan, Shui-Sheng Chang, Feng-Hsiang Hsueh, Hsin-Ta Ko, Tzu-Hsing Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method |
title | Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method |
title_full | Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method |
title_fullStr | Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method |
title_full_unstemmed | Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method |
title_short | Measurement of Total Free Iron in Soils by H(2)S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method |
title_sort | measurement of total free iron in soils by h(2)s chemisorption and comparison with the citrate bicarbonate dithionite method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221344/ https://www.ncbi.nlm.nih.gov/pubmed/28116218 http://dx.doi.org/10.1155/2016/7213542 |
work_keys_str_mv | AT fanshuisheng measurementoftotalfreeironinsoilsbyh2schemisorptionandcomparisonwiththecitratebicarbonatedithionitemethod AT changfenghsiang measurementoftotalfreeironinsoilsbyh2schemisorptionandcomparisonwiththecitratebicarbonatedithionitemethod AT hsuehhsinta measurementoftotalfreeironinsoilsbyh2schemisorptionandcomparisonwiththecitratebicarbonatedithionitemethod AT kotzuhsing measurementoftotalfreeironinsoilsbyh2schemisorptionandcomparisonwiththecitratebicarbonatedithionitemethod |