Cargando…

Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo

Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and p...

Descripción completa

Detalles Bibliográficos
Autores principales: Coffman, Valerie C., McDermott, Matthew B. A., Shtylla, Blerta, Dawes, Adriana T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221587/
https://www.ncbi.nlm.nih.gov/pubmed/27733624
http://dx.doi.org/10.1091/mbc.E16-06-0430
_version_ 1782492847335800832
author Coffman, Valerie C.
McDermott, Matthew B. A.
Shtylla, Blerta
Dawes, Adriana T.
author_facet Coffman, Valerie C.
McDermott, Matthew B. A.
Shtylla, Blerta
Dawes, Adriana T.
author_sort Coffman, Valerie C.
collection PubMed
description Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation. Here we propose a model that incorporates asymmetry in the microtubule arrays generated by each MTOC, which we demonstrate with in vivo measurements, and a similar asymmetric force profile to that required for posterior-directed spindle displacement during mitosis. We find that these asymmetries are capable of and important for recapitulating the simultaneous centration and rotation of the pronuclear complex observed in vivo. The combination of theoretical and experimental evidence provided here offers a unified framework for the spatial organization and forces needed for pronuclear centration, rotation, and spindle displacement in the early C. elegans embryo.
format Online
Article
Text
id pubmed-5221587
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-52215872017-01-22 Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo Coffman, Valerie C. McDermott, Matthew B. A. Shtylla, Blerta Dawes, Adriana T. Mol Biol Cell Articles Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation. Here we propose a model that incorporates asymmetry in the microtubule arrays generated by each MTOC, which we demonstrate with in vivo measurements, and a similar asymmetric force profile to that required for posterior-directed spindle displacement during mitosis. We find that these asymmetries are capable of and important for recapitulating the simultaneous centration and rotation of the pronuclear complex observed in vivo. The combination of theoretical and experimental evidence provided here offers a unified framework for the spatial organization and forces needed for pronuclear centration, rotation, and spindle displacement in the early C. elegans embryo. The American Society for Cell Biology 2016-11-07 /pmc/articles/PMC5221587/ /pubmed/27733624 http://dx.doi.org/10.1091/mbc.E16-06-0430 Text en © 2016 Coffman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.
spellingShingle Articles
Coffman, Valerie C.
McDermott, Matthew B. A.
Shtylla, Blerta
Dawes, Adriana T.
Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo
title Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo
title_full Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo
title_fullStr Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo
title_full_unstemmed Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo
title_short Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo
title_sort stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early caenorhabditis elegans embryo
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221587/
https://www.ncbi.nlm.nih.gov/pubmed/27733624
http://dx.doi.org/10.1091/mbc.E16-06-0430
work_keys_str_mv AT coffmanvaleriec strongernetposteriorcorticalforcesandasymmetricmicrotubulearraysproducesimultaneouscentrationandrotationofthepronuclearcomplexintheearlycaenorhabditiselegansembryo
AT mcdermottmatthewba strongernetposteriorcorticalforcesandasymmetricmicrotubulearraysproducesimultaneouscentrationandrotationofthepronuclearcomplexintheearlycaenorhabditiselegansembryo
AT shtyllablerta strongernetposteriorcorticalforcesandasymmetricmicrotubulearraysproducesimultaneouscentrationandrotationofthepronuclearcomplexintheearlycaenorhabditiselegansembryo
AT dawesadrianat strongernetposteriorcorticalforcesandasymmetricmicrotubulearraysproducesimultaneouscentrationandrotationofthepronuclearcomplexintheearlycaenorhabditiselegansembryo