Cargando…
Testing a proposed paradigm shift in analysis of phage DNA packaging
We argue that a paradigm shift is needed in the analysis of phage DNA packaging. We then test a prediction of the following paradigm shift-engendering hypothesis. The motor of phage DNA packaging has two cycles: (1) the well-known packaging ATPase-driven (type 1) cycle and (2) a proposed back-up, sh...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221748/ https://www.ncbi.nlm.nih.gov/pubmed/28090387 http://dx.doi.org/10.1080/21597081.2016.1268664 |
Sumario: | We argue that a paradigm shift is needed in the analysis of phage DNA packaging. We then test a prediction of the following paradigm shift-engendering hypothesis. The motor of phage DNA packaging has two cycles: (1) the well-known packaging ATPase-driven (type 1) cycle and (2) a proposed back-up, shell expansion/contraction-driven (type 2) cycle that reverses type 1 cycle stalls by expelling accidentally packaged non-DNA molecules. We test the prediction that increasing the cellular concentration of all macromolecules will cause packaging-active capsids to divert to states of hyper-expansion and contraction. We use a directed evolution-derived, 3-site phage T3 mutant, adapted to propagation in concentrated bacterial cytoplasm. We find this prediction correct while discovering novel T3 capsids previously obscure. |
---|