Cargando…
An Empirical Analysis of Rough Set Categorical Clustering Techniques
Clustering a set of objects into homogeneous groups is a fundamental operation in data mining. Recently, many attentions have been put on categorical data clustering, where data objects are made up of non-numerical attributes. For categorical data clustering the rough set based approaches such as Ma...
Autores principales: | Uddin, Jamal, Ghazali, Rozaida, Deris, Mustafa Mat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222507/ https://www.ncbi.nlm.nih.gov/pubmed/28068344 http://dx.doi.org/10.1371/journal.pone.0164803 |
Ejemplares similares
-
Rough set based information theoretic approach for clustering uncertain categorical data
por: Uddin, Jamal, et al.
Publicado: (2022) -
Recent advances on soft computing and data mining: proceedings of the fourth international conference on soft computing and data mining (SCDM 2020), Melaka, Malaysia, January 22-23 2020
por: Ghazali, Rozaida, et al.
Publicado: (2019) -
The First International Conference on Soft Computing and Data Mining
por: Herawan, Tutut, et al.
Publicado: (2014) -
A rough set based algorithm for updating the modes in categorical clustering
por: Salem, Semeh Ben, et al.
Publicado: (2021) -
2nd International Conference on Soft Computing and Data Mining
por: Herawan, Tutut, et al.
Publicado: (2017)