Cargando…

Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines

Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca(2+) stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could eli...

Descripción completa

Detalles Bibliográficos
Autores principales: Padamsey, Zahid, McGuinness, Lindsay, Bardo, Scott J., Reinhart, Marcia, Tong, Rudi, Hedegaard, Anne, Hart, Michael L., Emptage, Nigel J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222721/
https://www.ncbi.nlm.nih.gov/pubmed/27989455
http://dx.doi.org/10.1016/j.neuron.2016.11.013
_version_ 1782493053663051776
author Padamsey, Zahid
McGuinness, Lindsay
Bardo, Scott J.
Reinhart, Marcia
Tong, Rudi
Hedegaard, Anne
Hart, Michael L.
Emptage, Nigel J.
author_facet Padamsey, Zahid
McGuinness, Lindsay
Bardo, Scott J.
Reinhart, Marcia
Tong, Rudi
Hedegaard, Anne
Hart, Michael L.
Emptage, Nigel J.
author_sort Padamsey, Zahid
collection PubMed
description Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca(2+) stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca(2+) release from lysosomes in the dendrites. This Ca(2+) release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca(2+) signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling.
format Online
Article
Text
id pubmed-5222721
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-52227212017-01-18 Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines Padamsey, Zahid McGuinness, Lindsay Bardo, Scott J. Reinhart, Marcia Tong, Rudi Hedegaard, Anne Hart, Michael L. Emptage, Nigel J. Neuron Article Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca(2+) stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca(2+) release from lysosomes in the dendrites. This Ca(2+) release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca(2+) signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Cell Press 2017-01-04 /pmc/articles/PMC5222721/ /pubmed/27989455 http://dx.doi.org/10.1016/j.neuron.2016.11.013 Text en Crown Copyright © 2017 Published by Elsevier Inc. All rights reserved. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Padamsey, Zahid
McGuinness, Lindsay
Bardo, Scott J.
Reinhart, Marcia
Tong, Rudi
Hedegaard, Anne
Hart, Michael L.
Emptage, Nigel J.
Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines
title Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines
title_full Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines
title_fullStr Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines
title_full_unstemmed Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines
title_short Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines
title_sort activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222721/
https://www.ncbi.nlm.nih.gov/pubmed/27989455
http://dx.doi.org/10.1016/j.neuron.2016.11.013
work_keys_str_mv AT padamseyzahid activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT mcguinnesslindsay activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT bardoscottj activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT reinhartmarcia activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT tongrudi activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT hedegaardanne activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT hartmichaell activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines
AT emptagenigelj activitydependentexocytosisoflysosomesregulatesthestructuralplasticityofdendriticspines