Cargando…
Regularized gradient-projection methods for finding the minimum-norm solution of the constrained convex minimization problem
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Assume that g is a real-valued convex function and the gradient ∇g is [Formula: see text] -ism with [Formula: see text] . Let [Formula: see text] , [Formula: see text] . We prove that the sequence [Formula: see text] genera...
Autores principales: | Tian, Ming, Zhang, Hui-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5222927/ https://www.ncbi.nlm.nih.gov/pubmed/28111511 http://dx.doi.org/10.1186/s13660-016-1289-4 |
Ejemplares similares
-
An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
On the convergence of the gradient projection method for convex optimal control problems with bang–bang solutions
por: Preininger, J., et al.
Publicado: (2018) -
Iterative regularization for constrained minimization formulations of nonlinear inverse problems
por: Kaltenbacher, Barbara, et al.
Publicado: (2021) -
Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data
por: Boţ, Radu Ioan, et al.
Publicado: (2017) -
Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method
por: Doikov, Nikita, et al.
Publicado: (2021)