Cargando…

Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy

Clinical management of neonatal hypoxic-ischemic encephalopathy (HIE) suffers from the lack of reliable surrogate marker tests. Proteomic analysis may identify such biomarkers in blood, but there has been no proof-of-principle evidence to support this approach. Here we performed in-gel trypsin diges...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yikun, Dammer, Eric B., Zhang-Brotzge, Xiaohui, Chen, Scott, Duong, Duc M., Seyfried, Nicholas T., Kuan, Chia-Yi, Sun, Yu-Yo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223053/
https://www.ncbi.nlm.nih.gov/pubmed/28101531
http://dx.doi.org/10.1523/ENEURO.0253-16.2016
Descripción
Sumario:Clinical management of neonatal hypoxic-ischemic encephalopathy (HIE) suffers from the lack of reliable surrogate marker tests. Proteomic analysis may identify such biomarkers in blood, but there has been no proof-of-principle evidence to support this approach. Here we performed in-gel trypsin digestion of plasma proteins from four groups of 10-d-old mice [untouched and 24 h after low-dose lipopolysaccharide (LPS) exposure, hypoxia-ischemia (HI), or LPS/HI injury; n = 3 in each group) followed by liquid chromatography-tandem mass spectrometry and bioinformatics analysis to search for HI- and LPS/HI-associated brain injury biomarkers. This analysis suggested the induction of plasma osteopontin (OPN) by HI and LPS/HI, but not by sham and injury-free LPS exposure. Immunoblot confirmed post-HI induction of OPN protein in brain and blood, whereas Opn mRNA was induced in brain but not in blood. This disparity suggests brain-derived plasma OPN after HI injury. Similarly, immunostaining showed the expression of OPN by Iba1(+) microglia/macrophages in HI-injured brains. Further, intracerebroventricular injection of LPS activated microglia and up-regulated plasma OPN protein. Importantly, the induction of plasma OPN after HI was greater than that of matrix metalloproteinase 9 or glial fibrillary acid protein. Plasma OPN levels at 48 h post-HI also parallel the severity of brain damage at 7-d recovery. Together, these results suggest that OPN may be a prognostic blood biomarker in HIE through monitoring brain microglial activation.