Cargando…
Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration
Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitati...
Autores principales: | Edmunds, K. J., Árnadóttir, Í., Gíslason, M. K., Carraro, U., Gargiulo, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223076/ https://www.ncbi.nlm.nih.gov/pubmed/28115982 http://dx.doi.org/10.1155/2016/8932950 |
Ejemplares similares
-
Machine learning predictive system based upon radiodensitometric distributions from mid-thigh CT images
por: Recenti, Marco, et al.
Publicado: (2020) -
Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities
por: Edmunds, Kyle, et al.
Publicado: (2018) -
Assessing cardiovascular risks from a mid-thigh CT image: a tree-based machine learning approach using radiodensitometric distributions
por: Ricciardi, Carlo, et al.
Publicado: (2020) -
New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning
por: Gargiulo, Paolo, et al.
Publicado: (2017) -
Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment
por: Edmunds, Kyle Joseph, et al.
Publicado: (2016)