Cargando…

The complexity of interpreting genomic data in patients with acute myeloid leukemia

Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nazha, A, Zarzour, A, Al-Issa, K, Radivoyevitch, T, Carraway, H E, Hirsch, C M, Przychodzen, B, Patel, B J, Clemente, M, Sanikommu, S R, Kalaycio, M, Maciejewski, J P, Sekeres, M A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223150/
https://www.ncbi.nlm.nih.gov/pubmed/27983727
http://dx.doi.org/10.1038/bcj.2016.115
_version_ 1782493120398622720
author Nazha, A
Zarzour, A
Al-Issa, K
Radivoyevitch, T
Carraway, H E
Hirsch, C M
Przychodzen, B
Patel, B J
Clemente, M
Sanikommu, S R
Kalaycio, M
Maciejewski, J P
Sekeres, M A
author_facet Nazha, A
Zarzour, A
Al-Issa, K
Radivoyevitch, T
Carraway, H E
Hirsch, C M
Przychodzen, B
Patel, B J
Clemente, M
Sanikommu, S R
Kalaycio, M
Maciejewski, J P
Sekeres, M A
author_sort Nazha, A
collection PubMed
description Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML.
format Online
Article
Text
id pubmed-5223150
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52231502017-01-13 The complexity of interpreting genomic data in patients with acute myeloid leukemia Nazha, A Zarzour, A Al-Issa, K Radivoyevitch, T Carraway, H E Hirsch, C M Przychodzen, B Patel, B J Clemente, M Sanikommu, S R Kalaycio, M Maciejewski, J P Sekeres, M A Blood Cancer J Original Article Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML. Nature Publishing Group 2016-12 2016-12-16 /pmc/articles/PMC5223150/ /pubmed/27983727 http://dx.doi.org/10.1038/bcj.2016.115 Text en Copyright © 2016 The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Original Article
Nazha, A
Zarzour, A
Al-Issa, K
Radivoyevitch, T
Carraway, H E
Hirsch, C M
Przychodzen, B
Patel, B J
Clemente, M
Sanikommu, S R
Kalaycio, M
Maciejewski, J P
Sekeres, M A
The complexity of interpreting genomic data in patients with acute myeloid leukemia
title The complexity of interpreting genomic data in patients with acute myeloid leukemia
title_full The complexity of interpreting genomic data in patients with acute myeloid leukemia
title_fullStr The complexity of interpreting genomic data in patients with acute myeloid leukemia
title_full_unstemmed The complexity of interpreting genomic data in patients with acute myeloid leukemia
title_short The complexity of interpreting genomic data in patients with acute myeloid leukemia
title_sort complexity of interpreting genomic data in patients with acute myeloid leukemia
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223150/
https://www.ncbi.nlm.nih.gov/pubmed/27983727
http://dx.doi.org/10.1038/bcj.2016.115
work_keys_str_mv AT nazhaa thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT zarzoura thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT alissak thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT radivoyevitcht thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT carrawayhe thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT hirschcm thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT przychodzenb thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT patelbj thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT clementem thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT sanikommusr thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT kalayciom thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT maciejewskijp thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT sekeresma thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT nazhaa complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT zarzoura complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT alissak complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT radivoyevitcht complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT carrawayhe complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT hirschcm complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT przychodzenb complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT patelbj complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT clementem complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT sanikommusr complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT kalayciom complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT maciejewskijp complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia
AT sekeresma complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia