Cargando…
The complexity of interpreting genomic data in patients with acute myeloid leukemia
Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223150/ https://www.ncbi.nlm.nih.gov/pubmed/27983727 http://dx.doi.org/10.1038/bcj.2016.115 |
_version_ | 1782493120398622720 |
---|---|
author | Nazha, A Zarzour, A Al-Issa, K Radivoyevitch, T Carraway, H E Hirsch, C M Przychodzen, B Patel, B J Clemente, M Sanikommu, S R Kalaycio, M Maciejewski, J P Sekeres, M A |
author_facet | Nazha, A Zarzour, A Al-Issa, K Radivoyevitch, T Carraway, H E Hirsch, C M Przychodzen, B Patel, B J Clemente, M Sanikommu, S R Kalaycio, M Maciejewski, J P Sekeres, M A |
author_sort | Nazha, A |
collection | PubMed |
description | Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML. |
format | Online Article Text |
id | pubmed-5223150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52231502017-01-13 The complexity of interpreting genomic data in patients with acute myeloid leukemia Nazha, A Zarzour, A Al-Issa, K Radivoyevitch, T Carraway, H E Hirsch, C M Przychodzen, B Patel, B J Clemente, M Sanikommu, S R Kalaycio, M Maciejewski, J P Sekeres, M A Blood Cancer J Original Article Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML. Nature Publishing Group 2016-12 2016-12-16 /pmc/articles/PMC5223150/ /pubmed/27983727 http://dx.doi.org/10.1038/bcj.2016.115 Text en Copyright © 2016 The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Article Nazha, A Zarzour, A Al-Issa, K Radivoyevitch, T Carraway, H E Hirsch, C M Przychodzen, B Patel, B J Clemente, M Sanikommu, S R Kalaycio, M Maciejewski, J P Sekeres, M A The complexity of interpreting genomic data in patients with acute myeloid leukemia |
title | The complexity of interpreting genomic data in patients with acute myeloid leukemia |
title_full | The complexity of interpreting genomic data in patients with acute myeloid leukemia |
title_fullStr | The complexity of interpreting genomic data in patients with acute myeloid leukemia |
title_full_unstemmed | The complexity of interpreting genomic data in patients with acute myeloid leukemia |
title_short | The complexity of interpreting genomic data in patients with acute myeloid leukemia |
title_sort | complexity of interpreting genomic data in patients with acute myeloid leukemia |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223150/ https://www.ncbi.nlm.nih.gov/pubmed/27983727 http://dx.doi.org/10.1038/bcj.2016.115 |
work_keys_str_mv | AT nazhaa thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT zarzoura thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT alissak thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT radivoyevitcht thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT carrawayhe thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT hirschcm thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT przychodzenb thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT patelbj thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT clementem thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT sanikommusr thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT kalayciom thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT maciejewskijp thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT sekeresma thecomplexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT nazhaa complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT zarzoura complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT alissak complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT radivoyevitcht complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT carrawayhe complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT hirschcm complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT przychodzenb complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT patelbj complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT clementem complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT sanikommusr complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT kalayciom complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT maciejewskijp complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia AT sekeresma complexityofinterpretinggenomicdatainpatientswithacutemyeloidleukemia |