Cargando…

Three-Dimensional Genome Organization and Function in Drosophila

Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent techn...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwartz, Yuri B., Cavalli, Giacomo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223523/
https://www.ncbi.nlm.nih.gov/pubmed/28049701
http://dx.doi.org/10.1534/genetics.115.185132
Descripción
Sumario:Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.