Cargando…
Machine learning and computer vision approaches for phenotypic profiling
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-le...
Autores principales: | Grys, Ben T., Lo, Dara S., Sahin, Nil, Kraus, Oren Z., Morris, Quaid, Boone, Charles, Andrews, Brenda J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223612/ https://www.ncbi.nlm.nih.gov/pubmed/27940887 http://dx.doi.org/10.1083/jcb.201610026 |
Ejemplares similares
-
Automated analysis of high‐content microscopy data with deep learning
por: Kraus, Oren Z, et al.
Publicado: (2017) -
Systematic genetics and single‐cell imaging reveal widespread morphological pleiotropy and cell‐to‐cell variability
por: Mattiazzi Usaj, Mojca, et al.
Publicado: (2020) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
Computer vision and machine learning for robust phenotyping in genome-wide studies
por: Zhang, Jiaoping, et al.
Publicado: (2017) -
Machine Learning for Computer Vision
por: Cipolla, Roberto, et al.
Publicado: (2013)