Cargando…

A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae

Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosom...

Descripción completa

Detalles Bibliográficos
Autores principales: Reider Apel, Amanda, d'Espaux, Leo, Wehrs, Maren, Sachs, Daniel, Li, Rachel A., Tong, Gary J., Garber, Megan, Nnadi, Oge, Zhuang, William, Hillson, Nathan J., Keasling, Jay D., Mukhopadhyay, Aindrila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224472/
https://www.ncbi.nlm.nih.gov/pubmed/27899650
http://dx.doi.org/10.1093/nar/gkw1023
_version_ 1782493365525282816
author Reider Apel, Amanda
d'Espaux, Leo
Wehrs, Maren
Sachs, Daniel
Li, Rachel A.
Tong, Gary J.
Garber, Megan
Nnadi, Oge
Zhuang, William
Hillson, Nathan J.
Keasling, Jay D.
Mukhopadhyay, Aindrila
author_facet Reider Apel, Amanda
d'Espaux, Leo
Wehrs, Maren
Sachs, Daniel
Li, Rachel A.
Tong, Gary J.
Garber, Megan
Nnadi, Oge
Zhuang, William
Hillson, Nathan J.
Keasling, Jay D.
Mukhopadhyay, Aindrila
author_sort Reider Apel, Amanda
collection PubMed
description Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editing methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.
format Online
Article
Text
id pubmed-5224472
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-52244722017-01-17 A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae Reider Apel, Amanda d'Espaux, Leo Wehrs, Maren Sachs, Daniel Li, Rachel A. Tong, Gary J. Garber, Megan Nnadi, Oge Zhuang, William Hillson, Nathan J. Keasling, Jay D. Mukhopadhyay, Aindrila Nucleic Acids Res Synthetic Biology and Bioengineering Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editing methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production. Oxford University Press 2017-01-09 2016-11-24 /pmc/articles/PMC5224472/ /pubmed/27899650 http://dx.doi.org/10.1093/nar/gkw1023 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Synthetic Biology and Bioengineering
Reider Apel, Amanda
d'Espaux, Leo
Wehrs, Maren
Sachs, Daniel
Li, Rachel A.
Tong, Gary J.
Garber, Megan
Nnadi, Oge
Zhuang, William
Hillson, Nathan J.
Keasling, Jay D.
Mukhopadhyay, Aindrila
A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
title A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
title_full A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
title_fullStr A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
title_full_unstemmed A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
title_short A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
title_sort cas9-based toolkit to program gene expression in saccharomyces cerevisiae
topic Synthetic Biology and Bioengineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224472/
https://www.ncbi.nlm.nih.gov/pubmed/27899650
http://dx.doi.org/10.1093/nar/gkw1023
work_keys_str_mv AT reiderapelamanda acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT despauxleo acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT wehrsmaren acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT sachsdaniel acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT lirachela acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT tonggaryj acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT garbermegan acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT nnadioge acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT zhuangwilliam acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT hillsonnathanj acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT keaslingjayd acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT mukhopadhyayaindrila acas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT reiderapelamanda cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT despauxleo cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT wehrsmaren cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT sachsdaniel cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT lirachela cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT tonggaryj cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT garbermegan cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT nnadioge cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT zhuangwilliam cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT hillsonnathanj cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT keaslingjayd cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae
AT mukhopadhyayaindrila cas9basedtoolkittoprogramgeneexpressioninsaccharomycescerevisiae