Cargando…
Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224477/ https://www.ncbi.nlm.nih.gov/pubmed/27899623 http://dx.doi.org/10.1093/nar/gkw1061 |
_version_ | 1782493366632579072 |
---|---|
author | Schmidt, Florian Gasparoni, Nina Gasparoni, Gilles Gianmoena, Kathrin Cadenas, Cristina Polansky, Julia K. Ebert, Peter Nordström, Karl Barann, Matthias Sinha, Anupam Fröhler, Sebastian Xiong, Jieyi Dehghani Amirabad, Azim Behjati Ardakani, Fatemeh Hutter, Barbara Zipprich, Gideon Felder, Bärbel Eils, Jürgen Brors, Benedikt Chen, Wei Hengstler, Jan G. Hamann, Alf Lengauer, Thomas Rosenstiel, Philip Walter, Jörn Schulz, Marcel H. |
author_facet | Schmidt, Florian Gasparoni, Nina Gasparoni, Gilles Gianmoena, Kathrin Cadenas, Cristina Polansky, Julia K. Ebert, Peter Nordström, Karl Barann, Matthias Sinha, Anupam Fröhler, Sebastian Xiong, Jieyi Dehghani Amirabad, Azim Behjati Ardakani, Fatemeh Hutter, Barbara Zipprich, Gideon Felder, Bärbel Eils, Jürgen Brors, Benedikt Chen, Wei Hengstler, Jan G. Hamann, Alf Lengauer, Thomas Rosenstiel, Philip Walter, Jörn Schulz, Marcel H. |
author_sort | Schmidt, Florian |
collection | PubMed |
description | The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. |
format | Online Article Text |
id | pubmed-5224477 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-52244772017-01-17 Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction Schmidt, Florian Gasparoni, Nina Gasparoni, Gilles Gianmoena, Kathrin Cadenas, Cristina Polansky, Julia K. Ebert, Peter Nordström, Karl Barann, Matthias Sinha, Anupam Fröhler, Sebastian Xiong, Jieyi Dehghani Amirabad, Azim Behjati Ardakani, Fatemeh Hutter, Barbara Zipprich, Gideon Felder, Bärbel Eils, Jürgen Brors, Benedikt Chen, Wei Hengstler, Jan G. Hamann, Alf Lengauer, Thomas Rosenstiel, Philip Walter, Jörn Schulz, Marcel H. Nucleic Acids Res Computational Biology The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. Oxford University Press 2017-01-09 2016-11-28 /pmc/articles/PMC5224477/ /pubmed/27899623 http://dx.doi.org/10.1093/nar/gkw1061 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Computational Biology Schmidt, Florian Gasparoni, Nina Gasparoni, Gilles Gianmoena, Kathrin Cadenas, Cristina Polansky, Julia K. Ebert, Peter Nordström, Karl Barann, Matthias Sinha, Anupam Fröhler, Sebastian Xiong, Jieyi Dehghani Amirabad, Azim Behjati Ardakani, Fatemeh Hutter, Barbara Zipprich, Gideon Felder, Bärbel Eils, Jürgen Brors, Benedikt Chen, Wei Hengstler, Jan G. Hamann, Alf Lengauer, Thomas Rosenstiel, Philip Walter, Jörn Schulz, Marcel H. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
title | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
title_full | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
title_fullStr | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
title_full_unstemmed | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
title_short | Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
title_sort | combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction |
topic | Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224477/ https://www.ncbi.nlm.nih.gov/pubmed/27899623 http://dx.doi.org/10.1093/nar/gkw1061 |
work_keys_str_mv | AT schmidtflorian combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT gasparoninina combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT gasparonigilles combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT gianmoenakathrin combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT cadenascristina combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT polanskyjuliak combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT ebertpeter combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT nordstromkarl combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT barannmatthias combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT sinhaanupam combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT frohlersebastian combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT xiongjieyi combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT dehghaniamirabadazim combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT behjatiardakanifatemeh combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT hutterbarbara combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT zipprichgideon combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT felderbarbel combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT eilsjurgen combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT brorsbenedikt combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT chenwei combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT hengstlerjang combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT hamannalf combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT lengauerthomas combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT rosenstielphilip combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT walterjorn combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction AT schulzmarcelh combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction |