Cargando…

Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs)...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmidt, Florian, Gasparoni, Nina, Gasparoni, Gilles, Gianmoena, Kathrin, Cadenas, Cristina, Polansky, Julia K., Ebert, Peter, Nordström, Karl, Barann, Matthias, Sinha, Anupam, Fröhler, Sebastian, Xiong, Jieyi, Dehghani Amirabad, Azim, Behjati Ardakani, Fatemeh, Hutter, Barbara, Zipprich, Gideon, Felder, Bärbel, Eils, Jürgen, Brors, Benedikt, Chen, Wei, Hengstler, Jan G., Hamann, Alf, Lengauer, Thomas, Rosenstiel, Philip, Walter, Jörn, Schulz, Marcel H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224477/
https://www.ncbi.nlm.nih.gov/pubmed/27899623
http://dx.doi.org/10.1093/nar/gkw1061
_version_ 1782493366632579072
author Schmidt, Florian
Gasparoni, Nina
Gasparoni, Gilles
Gianmoena, Kathrin
Cadenas, Cristina
Polansky, Julia K.
Ebert, Peter
Nordström, Karl
Barann, Matthias
Sinha, Anupam
Fröhler, Sebastian
Xiong, Jieyi
Dehghani Amirabad, Azim
Behjati Ardakani, Fatemeh
Hutter, Barbara
Zipprich, Gideon
Felder, Bärbel
Eils, Jürgen
Brors, Benedikt
Chen, Wei
Hengstler, Jan G.
Hamann, Alf
Lengauer, Thomas
Rosenstiel, Philip
Walter, Jörn
Schulz, Marcel H.
author_facet Schmidt, Florian
Gasparoni, Nina
Gasparoni, Gilles
Gianmoena, Kathrin
Cadenas, Cristina
Polansky, Julia K.
Ebert, Peter
Nordström, Karl
Barann, Matthias
Sinha, Anupam
Fröhler, Sebastian
Xiong, Jieyi
Dehghani Amirabad, Azim
Behjati Ardakani, Fatemeh
Hutter, Barbara
Zipprich, Gideon
Felder, Bärbel
Eils, Jürgen
Brors, Benedikt
Chen, Wei
Hengstler, Jan G.
Hamann, Alf
Lengauer, Thomas
Rosenstiel, Philip
Walter, Jörn
Schulz, Marcel H.
author_sort Schmidt, Florian
collection PubMed
description The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.
format Online
Article
Text
id pubmed-5224477
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-52244772017-01-17 Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction Schmidt, Florian Gasparoni, Nina Gasparoni, Gilles Gianmoena, Kathrin Cadenas, Cristina Polansky, Julia K. Ebert, Peter Nordström, Karl Barann, Matthias Sinha, Anupam Fröhler, Sebastian Xiong, Jieyi Dehghani Amirabad, Azim Behjati Ardakani, Fatemeh Hutter, Barbara Zipprich, Gideon Felder, Bärbel Eils, Jürgen Brors, Benedikt Chen, Wei Hengstler, Jan G. Hamann, Alf Lengauer, Thomas Rosenstiel, Philip Walter, Jörn Schulz, Marcel H. Nucleic Acids Res Computational Biology The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. Oxford University Press 2017-01-09 2016-11-28 /pmc/articles/PMC5224477/ /pubmed/27899623 http://dx.doi.org/10.1093/nar/gkw1061 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Computational Biology
Schmidt, Florian
Gasparoni, Nina
Gasparoni, Gilles
Gianmoena, Kathrin
Cadenas, Cristina
Polansky, Julia K.
Ebert, Peter
Nordström, Karl
Barann, Matthias
Sinha, Anupam
Fröhler, Sebastian
Xiong, Jieyi
Dehghani Amirabad, Azim
Behjati Ardakani, Fatemeh
Hutter, Barbara
Zipprich, Gideon
Felder, Bärbel
Eils, Jürgen
Brors, Benedikt
Chen, Wei
Hengstler, Jan G.
Hamann, Alf
Lengauer, Thomas
Rosenstiel, Philip
Walter, Jörn
Schulz, Marcel H.
Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
title Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
title_full Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
title_fullStr Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
title_full_unstemmed Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
title_short Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
title_sort combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224477/
https://www.ncbi.nlm.nih.gov/pubmed/27899623
http://dx.doi.org/10.1093/nar/gkw1061
work_keys_str_mv AT schmidtflorian combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT gasparoninina combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT gasparonigilles combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT gianmoenakathrin combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT cadenascristina combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT polanskyjuliak combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT ebertpeter combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT nordstromkarl combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT barannmatthias combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT sinhaanupam combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT frohlersebastian combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT xiongjieyi combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT dehghaniamirabadazim combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT behjatiardakanifatemeh combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT hutterbarbara combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT zipprichgideon combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT felderbarbel combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT eilsjurgen combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT brorsbenedikt combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT chenwei combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT hengstlerjang combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT hamannalf combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT lengauerthomas combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT rosenstielphilip combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT walterjorn combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction
AT schulzmarcelh combiningtranscriptionfactorbindingaffinitieswithopenchromatindataforaccurategeneexpressionprediction