Cargando…

A Fast Response Ammonia Sensor Based on Coaxial PPy–PAN Nanofiber Yarn

Highly orientated polypyrrole (PPy)–coated polyacrylonitrile (PAN) (PPy–PAN) nanofiber yarn was prepared with an electrospinning technique and in-situ chemical polymerization. The morphology and chemical structure of PPy–PAN nanofiber yarn was characterized by scanning electron microscopy (SEM), fie...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Penghong, Wu, Shaohua, Zhang, Yue, Zhang, Hongnan, Qin, Xiaohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224600/
https://www.ncbi.nlm.nih.gov/pubmed/28335248
http://dx.doi.org/10.3390/nano6070121
Descripción
Sumario:Highly orientated polypyrrole (PPy)–coated polyacrylonitrile (PAN) (PPy–PAN) nanofiber yarn was prepared with an electrospinning technique and in-situ chemical polymerization. The morphology and chemical structure of PPy–PAN nanofiber yarn was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR), which indicated that the PPy as the shell layer was homogeneously and uniformly polymerized on the surface of PAN nanofiber. The effects of different concentration of doping acid on the responses of PPy–PAN nanofiber yarn sensor were investigated. The electrical responses of the gas sensor based on the PPy–PAN nanofiber yarn to ammonia were investigated at room temperature. The nanoyarn sensor composed of uniaxially aligned PPy–PAN nanofibers with a one-dimensional structure exhibited a transient response, and the response time was less than 1 s. The excellent sensing properties mentioned above give rise to good potential application prospects in the field of ammonia sensor.