Cargando…

Tuberculosis Detection in Paratuberculosis Vaccinated Calves: New Alternatives against Interference

Paratuberculosis vaccination in cattle has been restricted due to its possible interference with the official diagnostic methods used in tuberculosis eradication programs. To overcome this drawback, new possibilities to detect Mycobacterium bovis infected cattle in paratuberculosis vaccinated animal...

Descripción completa

Detalles Bibliográficos
Autores principales: Serrano, Miriam, Elguezabal, Natalia, Sevilla, Iker A., Geijo, María V., Molina, Elena, Arrazuria, Rakel, Urkitza, Alfonso, Jones, Gareth J., Vordermeier, Martin, Garrido, Joseba M., Juste, Ramón A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224860/
https://www.ncbi.nlm.nih.gov/pubmed/28072845
http://dx.doi.org/10.1371/journal.pone.0169735
Descripción
Sumario:Paratuberculosis vaccination in cattle has been restricted due to its possible interference with the official diagnostic methods used in tuberculosis eradication programs. To overcome this drawback, new possibilities to detect Mycobacterium bovis infected cattle in paratuberculosis vaccinated animals were studied under experimental conditions. Three groups of 5 calves each were included in the experiment: one paratuberculosis vaccinated group, one paratuberculosis vaccinated and M. bovis infected group and one M. bovis infected group. The performance of the IFN-gamma release assay (IGRA) and the skin test using conventional avian and bovine tuberculins (A- and B-PPD) but also other more specific antigens (ESAT-6/CFP10 and Rv3615c) was studied under official and new diagnostic criteria. Regarding the IGRA of vaccinated groups, when A- and B-PPD were used the sensitivity reached 100% at the first post-challenge sampling, dropping down to 40–80% in subsequent samplings. The sensitivity for the specific antigens was 80–100% and the specificity was also improved. After adapting the diagnostic criteria for the conventional antigens in the skin test, the ability to differentiate between M. bovis infected and non-infected animals included in paratuberculosis vaccinated groups was enhanced. Taking for positive a relative skin thickness increase of at least 100%, the single intradermal test specificity and sensitivity yielded 100%. The comparative intradermal test was equally accurate considering a B-PPD relative skin increase of at least 100% and greater than or equal to that produced by A-PPD. Using the specific antigens as a proteic cocktail, the specificity and sensitivity reached 100% considering the new relative and absolute cut-offs in all experimental groups (Δ≥30% and Δmm ≥ 2, respectively). Results suggest that the interference caused by paratuberculosis vaccination in cattle could be completely overcome by applying new approaches to the official tuberculosis diagnostic tests.