Cargando…
Classifying Glioblastoma Multiforme Follow-Up Progressive vs. Responsive Forms Using Multi-Parametric MRI Features
Purpose: The purpose of this paper is discriminating between tumor progression and response to treatment based on follow-up multi-parametric magnetic resonance imaging (MRI) data retrieved from glioblastoma multiforme (GBM) patients. Materials and Methods: Multi-parametric MRI data consisting of con...
Autores principales: | Ion-Mărgineanu, Adrian, Van Cauter, Sofie, Sima, Diana M., Maes, Frederik, Sunaert, Stefan, Himmelreich, Uwe, Van Huffel, Sabine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225114/ https://www.ncbi.nlm.nih.gov/pubmed/28123355 http://dx.doi.org/10.3389/fnins.2016.00615 |
Ejemplares similares
-
Tumour Relapse Prediction Using Multiparametric MR Data Recorded during Follow-Up of GBM Patients
por: Ion-Margineanu, Adrian, et al.
Publicado: (2015) -
Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
por: Sauwen, N., et al.
Publicado: (2016) -
Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization
por: Sauwen, Nicolas, et al.
Publicado: (2017) -
Data Analysis and Tissue Type Assignment for Glioblastoma Multiforme
por: Li, Yuqian, et al.
Publicado: (2014) -
Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
por: Ion-Mărgineanu, Adrian, et al.
Publicado: (2017)