Cargando…
Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of Predicting Mental Workload across Tasks
There is increasing interest in real-time brain-computer interfaces (BCIs) for the passive monitoring of human cognitive state, including cognitive workload. Too often, however, effective BCIs based on machine learning techniques may function as “black boxes” that are difficult to analyze or interpr...
Autores principales: | Caywood, Matthew S., Roberts, Daniel M., Colombe, Jeffrey B., Greenwald, Hal S., Weiland, Monica Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225116/ https://www.ncbi.nlm.nih.gov/pubmed/28123359 http://dx.doi.org/10.3389/fnhum.2016.00647 |
Ejemplares similares
-
Lightweight Workload Fingerprinting Localization Using Affinity Propagation Clustering and Gaussian Process Regression
por: Subedi, Santosh, et al.
Publicado: (2018) -
Prediction of Bus Passenger Traffic using Gaussian Process Regression
por: G S, Vidya, et al.
Publicado: (2022) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction
por: Kopsiaftis, George, et al.
Publicado: (2019) -
Gaussian Process
Regression Models for Predicting
Atomic Energies and Multipole Moments
por: Burn, Matthew J., et al.
Publicado: (2023)