Cargando…
Reverse engineering gene regulatory networks from measurement with missing values
BACKGROUND: Gene expression time series data are usually in the form of high-dimensional arrays. Unfortunately, the data may sometimes contain missing values: for either the expression values of some genes at some time points or the entire expression values of a single time point or some sets of con...
Autores principales: | Ogundijo, Oyetunji E., Elmas, Abdulkadir, Wang, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225239/ https://www.ncbi.nlm.nih.gov/pubmed/28127303 http://dx.doi.org/10.1186/s13637-016-0055-8 |
Ejemplares similares
-
A sequential Monte Carlo approach to gene expression deconvolution
por: Ogundijo, Oyetunji E., et al.
Publicado: (2017) -
Bayesian estimation of scaled mutation rate under the coalescent: a sequential Monte Carlo approach
por: Ogundijo, Oyetunji E., et al.
Publicado: (2017) -
Characterization of tumor heterogeneity by latent haplotypes: a sequential Monte Carlo approach
por: Ogundijo, Oyetunji E., et al.
Publicado: (2018) -
SeqClone: sequential Monte Carlo based inference of tumor subclones
por: Ogundijo, Oyetunji E., et al.
Publicado: (2019) -
A sequential Monte Carlo algorithm for inference of subclonal structure in cancer
por: Ogundijo, Oyetunji E., et al.
Publicado: (2019)