Cargando…

Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti

BACKGROUND: Mutator-like transposable elements (MULEs) are widespread with members in fungi, plants, and animals. Most of the research on the MULE superfamily has focused on plant MULEs where they were discovered and where some are extremely active and have significant impact on genome structure. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Kun, Wessler, Susan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225508/
https://www.ncbi.nlm.nih.gov/pubmed/28096902
http://dx.doi.org/10.1186/s13100-016-0084-6
_version_ 1782493520226942976
author Liu, Kun
Wessler, Susan R.
author_facet Liu, Kun
Wessler, Susan R.
author_sort Liu, Kun
collection PubMed
description BACKGROUND: Mutator-like transposable elements (MULEs) are widespread with members in fungi, plants, and animals. Most of the research on the MULE superfamily has focused on plant MULEs where they were discovered and where some are extremely active and have significant impact on genome structure. The maize MuDR element has been widely used as a tool for both forward and reverse genetic studies because of its high transposition rate and preference for targeting genic regions. However, despite being widespread, only a few active MULEs have been identified, and only one, the rice Os3378, has demonstrated activity in a non-host organism. RESULTS: Here we report the identification of potentially active MULEs in the mosquito Aedes aegypti. We demonstrate that one of these, Muta1, is capable of excision and reinsertion in a yeast transposition assay. Element reinsertion generated either 8 bp or 9 bp target site duplications (TSDs) with no apparent sequence preference. Mutagenesis analysis of donor site TSDs in the yeast assay indicates that their presence is important for precise excision and enhanced transposition. Site directed mutagenesis of the putative DDE catalytic motif and other conserved residues in the transposase protein abolished transposition activity. CONCLUSIONS: Collectively, our data indicates that the Muta1 transposase of Ae. aegypti can efficiently catalyze both excision and reinsertion reactions in yeast. Mutagenesis analysis reveals that several conserved amino acids, including the DDE triad, play important roles in transposase function. In addition, donor site TSD also impacts the transposition of Muta1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13100-016-0084-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5225508
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-52255082017-01-17 Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti Liu, Kun Wessler, Susan R. Mob DNA Research BACKGROUND: Mutator-like transposable elements (MULEs) are widespread with members in fungi, plants, and animals. Most of the research on the MULE superfamily has focused on plant MULEs where they were discovered and where some are extremely active and have significant impact on genome structure. The maize MuDR element has been widely used as a tool for both forward and reverse genetic studies because of its high transposition rate and preference for targeting genic regions. However, despite being widespread, only a few active MULEs have been identified, and only one, the rice Os3378, has demonstrated activity in a non-host organism. RESULTS: Here we report the identification of potentially active MULEs in the mosquito Aedes aegypti. We demonstrate that one of these, Muta1, is capable of excision and reinsertion in a yeast transposition assay. Element reinsertion generated either 8 bp or 9 bp target site duplications (TSDs) with no apparent sequence preference. Mutagenesis analysis of donor site TSDs in the yeast assay indicates that their presence is important for precise excision and enhanced transposition. Site directed mutagenesis of the putative DDE catalytic motif and other conserved residues in the transposase protein abolished transposition activity. CONCLUSIONS: Collectively, our data indicates that the Muta1 transposase of Ae. aegypti can efficiently catalyze both excision and reinsertion reactions in yeast. Mutagenesis analysis reveals that several conserved amino acids, including the DDE triad, play important roles in transposase function. In addition, donor site TSD also impacts the transposition of Muta1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13100-016-0084-6) contains supplementary material, which is available to authorized users. BioMed Central 2017-01-11 /pmc/articles/PMC5225508/ /pubmed/28096902 http://dx.doi.org/10.1186/s13100-016-0084-6 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Liu, Kun
Wessler, Susan R.
Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti
title Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti
title_full Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti
title_fullStr Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti
title_full_unstemmed Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti
title_short Functional characterization of the active Mutator-like transposable element, Muta1 from the mosquito Aedes aegypti
title_sort functional characterization of the active mutator-like transposable element, muta1 from the mosquito aedes aegypti
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225508/
https://www.ncbi.nlm.nih.gov/pubmed/28096902
http://dx.doi.org/10.1186/s13100-016-0084-6
work_keys_str_mv AT liukun functionalcharacterizationoftheactivemutatorliketransposableelementmuta1fromthemosquitoaedesaegypti
AT wesslersusanr functionalcharacterizationoftheactivemutatorliketransposableelementmuta1fromthemosquitoaedesaegypti