Cargando…

Transcriptomic evidence for the control of soybean root isoflavonoid content by regulation of overlapping phenylpropanoid pathways

BACKGROUND: Isoflavonoids are a class of specialized metabolites found predominantly in legumes. They play a role in signaling for symbiosis with nitrogen-fixing bacteria and inhibiting pathogen infection. RESULTS: A transcriptomic approach using soybean cultivars with high (Conrad and AC Colombe) a...

Descripción completa

Detalles Bibliográficos
Autores principales: Dastmalchi, Mehran, Chapman, Patrick, Yu, Jaeju, Austin, Ryan S., Dhaubhadel, Sangeeta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225596/
https://www.ncbi.nlm.nih.gov/pubmed/28077078
http://dx.doi.org/10.1186/s12864-016-3463-y
Descripción
Sumario:BACKGROUND: Isoflavonoids are a class of specialized metabolites found predominantly in legumes. They play a role in signaling for symbiosis with nitrogen-fixing bacteria and inhibiting pathogen infection. RESULTS: A transcriptomic approach using soybean cultivars with high (Conrad and AC Colombe) and low (AC Glengarry and Pagoda) root isoflavonoid content was used to find elements that underlie this variation. Two genes, encoding the flavonoid-metabolizing enzymes, flavonoid 3′-hydroxylase (GmF3′H) and dihydroflavonol 4-reductase (GmDFR), had lower expression levels in high isoflavonoid cultivars. These enzymes compete with isoflavonoid biosynthetic enzymes for the important branch-point substrate naringenin and its derivatives. Differentially expressed genes, between the two sets of cultivars, encode transcription factors, transporters and enzymatic families of interest, such as oxidoreductases, hydrolases and transferases. In addition, genes annotated with stress and disease response were upregulated in high isoflavonoid cultivars. CONCLUSIONS: Coordinated regulation of genes involved in flavonoid metabolism could redirect flux into the isoflavonoid branch of the phenylpropanoid pathway, by reducing competition for the flavanone substrate. These candidate genes could help identify mechanisms to overcome the endogenous bottleneck to isoflavonoid production, facilitate biosynthesis in heterologous systems, and enhance crop resistance against pathogenic infections. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3463-y) contains supplementary material, which is available to authorized users.