Cargando…

Current trends in the treatment of hepatitis C: interventions to avoid adverse effects and increase effectiveness of anti-HCV drugs

Viral hepatitis, an inflammatory liver disease, is caused by various genotypes of hepatitis C viruses (HCV). Hepatitis C slowly sprouts into fibrosis, which progresses to cirrhosis. Over a prolonged period of time compensated cirrhosis can advance to decompensated cirrhosis culminating in hepatic fa...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleem, Ammara, Akhtar, Muhammad Furqan, Mushtaq, Muhammed Fahd, Saleem, Muhammad, Muhammad, Syed Taqi, Akhtar, Bushra, Sharif, Ali, Peerzada, Sohaib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Leibniz Research Centre for Working Environment and Human Factors 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225681/
https://www.ncbi.nlm.nih.gov/pubmed/28096788
http://dx.doi.org/10.17179/excli2016-582
Descripción
Sumario:Viral hepatitis, an inflammatory liver disease, is caused by various genotypes of hepatitis C viruses (HCV). Hepatitis C slowly sprouts into fibrosis, which progresses to cirrhosis. Over a prolonged period of time compensated cirrhosis can advance to decompensated cirrhosis culminating in hepatic failure and death. Conventional treatment of HCV involves the administration of interferons. However, association of interferon with the adverse drug reactions led to the development of novel anti-HCV drugs given as monotherapy or in combination with the other drugs. Advances in drug delivery systems (DDS) improved the pharmacokinetic profile and stability of drugs, ameliorated tissue damages on extravasation and increased the targeting of affected sites. Liposomes and lipid based vehicles have been employed with polyethylene glycol (PEG) so as to stabilize the formulations as PEG drug complex. Sofosbuvir, a novel anti-HCV drug, is administered as monotherapy or in combination with daclatasvir, ledipasivir, protease inhibitors, ribavirin and interferon for the treatment of HCV genotypes 1, 2 and 3. These drug combinations are highly effective in eradicating the interferon resistance, recurrent HCV infection in liver transplant, concurrent HIV infection and preventing interferon related adverse effects. Further investigations to improve drug targeting and identification of new drug targets are highly warranted due to the rapid emergence of drug resistance in HCV.