Cargando…

Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets

INTRODUCTION: Data quality and fitness for analysis are crucial if outputs of analyses of electronic health record data or administrative claims data should be trusted by the public and the research community. METHODS: We describe a data quality analysis tool (called Achilles Heel) developed by the...

Descripción completa

Detalles Bibliográficos
Autores principales: Huser, Vojtech, DeFalco, Frank J., Schuemie, Martijn, Ryan, Patrick B., Shang, Ning, Velez, Mark, Park, Rae Woong, Boyce, Richard D., Duke, Jon, Khare, Ritu, Utidjian, Levon, Bailey, Charles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AcademyHealth 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226382/
https://www.ncbi.nlm.nih.gov/pubmed/28154833
http://dx.doi.org/10.13063/2327-9214.1239
_version_ 1782493641293430784
author Huser, Vojtech
DeFalco, Frank J.
Schuemie, Martijn
Ryan, Patrick B.
Shang, Ning
Velez, Mark
Park, Rae Woong
Boyce, Richard D.
Duke, Jon
Khare, Ritu
Utidjian, Levon
Bailey, Charles
author_facet Huser, Vojtech
DeFalco, Frank J.
Schuemie, Martijn
Ryan, Patrick B.
Shang, Ning
Velez, Mark
Park, Rae Woong
Boyce, Richard D.
Duke, Jon
Khare, Ritu
Utidjian, Levon
Bailey, Charles
author_sort Huser, Vojtech
collection PubMed
description INTRODUCTION: Data quality and fitness for analysis are crucial if outputs of analyses of electronic health record data or administrative claims data should be trusted by the public and the research community. METHODS: We describe a data quality analysis tool (called Achilles Heel) developed by the Observational Health Data Sciences and Informatics Collaborative (OHDSI) and compare outputs from this tool as it was applied to 24 large healthcare datasets across seven different organizations. RESULTS: We highlight 12 data quality rules that identified issues in at least 10 of the 24 datasets and provide a full set of 71 rules identified in at least one dataset. Achilles Heel is a freely available software that provides a useful starter set of data quality rules with the ability to add additional rules. We also present results of a structured email-based interview of all participating sites that collected qualitative comments about the value of Achilles Heel for data quality evaluation. DISCUSSION: Our analysis represents the first comparison of outputs from a data quality tool that implements a fixed (but extensible) set of data quality rules. Thanks to a common data model, we were able to compare quickly multiple datasets originating from several countries in America, Europe and Asia.
format Online
Article
Text
id pubmed-5226382
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher AcademyHealth
record_format MEDLINE/PubMed
spelling pubmed-52263822017-02-02 Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets Huser, Vojtech DeFalco, Frank J. Schuemie, Martijn Ryan, Patrick B. Shang, Ning Velez, Mark Park, Rae Woong Boyce, Richard D. Duke, Jon Khare, Ritu Utidjian, Levon Bailey, Charles EGEMS (Wash DC) Articles INTRODUCTION: Data quality and fitness for analysis are crucial if outputs of analyses of electronic health record data or administrative claims data should be trusted by the public and the research community. METHODS: We describe a data quality analysis tool (called Achilles Heel) developed by the Observational Health Data Sciences and Informatics Collaborative (OHDSI) and compare outputs from this tool as it was applied to 24 large healthcare datasets across seven different organizations. RESULTS: We highlight 12 data quality rules that identified issues in at least 10 of the 24 datasets and provide a full set of 71 rules identified in at least one dataset. Achilles Heel is a freely available software that provides a useful starter set of data quality rules with the ability to add additional rules. We also present results of a structured email-based interview of all participating sites that collected qualitative comments about the value of Achilles Heel for data quality evaluation. DISCUSSION: Our analysis represents the first comparison of outputs from a data quality tool that implements a fixed (but extensible) set of data quality rules. Thanks to a common data model, we were able to compare quickly multiple datasets originating from several countries in America, Europe and Asia. AcademyHealth 2016-11-30 /pmc/articles/PMC5226382/ /pubmed/28154833 http://dx.doi.org/10.13063/2327-9214.1239 Text en All eGEMs publications are licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Articles
Huser, Vojtech
DeFalco, Frank J.
Schuemie, Martijn
Ryan, Patrick B.
Shang, Ning
Velez, Mark
Park, Rae Woong
Boyce, Richard D.
Duke, Jon
Khare, Ritu
Utidjian, Levon
Bailey, Charles
Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets
title Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets
title_full Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets
title_fullStr Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets
title_full_unstemmed Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets
title_short Multisite Evaluation of a Data Quality Tool for Patient-Level Clinical Data Sets
title_sort multisite evaluation of a data quality tool for patient-level clinical data sets
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226382/
https://www.ncbi.nlm.nih.gov/pubmed/28154833
http://dx.doi.org/10.13063/2327-9214.1239
work_keys_str_mv AT huservojtech multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT defalcofrankj multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT schuemiemartijn multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT ryanpatrickb multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT shangning multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT velezmark multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT parkraewoong multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT boycerichardd multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT dukejon multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT khareritu multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT utidjianlevon multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets
AT baileycharles multisiteevaluationofadataqualitytoolforpatientlevelclinicaldatasets