Cargando…

Synthesis of Cationized Magnetoferritin for Ultra-fast Magnetization of Cells

Many important biomedical applications, such as cell imaging and remote manipulation, can be achieved by labeling cells with superparamagnetic iron oxide nanoparticles (SPIONs). Achieving sufficient cellular uptake of SPIONs is a challenge that has traditionally been met by exposing cells to elevate...

Descripción completa

Detalles Bibliográficos
Autores principales: Correia Carreira, Sara, Armstrong, James P.K., Okuda, Mitsuhiro, Seddon, Annela M., Perriman, Adam W., Schwarzacher, Walther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226398/
https://www.ncbi.nlm.nih.gov/pubmed/28060256
http://dx.doi.org/10.3791/54785
Descripción
Sumario:Many important biomedical applications, such as cell imaging and remote manipulation, can be achieved by labeling cells with superparamagnetic iron oxide nanoparticles (SPIONs). Achieving sufficient cellular uptake of SPIONs is a challenge that has traditionally been met by exposing cells to elevated concentrations of SPIONs or by prolonging exposure times (up to 72 hr). However, these strategies are likely to mediate toxicity. Here, we present the synthesis of the protein-based SPION magnetoferritin as well as a facile surface functionalization protocol that enables rapid cell magnetization using low exposure concentrations. The SPION core of magnetoferritin consists of cobalt-doped iron oxide with an average particle diameter of 8.2 nm mineralized inside the cavity of horse spleen apo-ferritin. Chemical cationization of magnetoferritin produced a novel, highly membrane-active SPION that magnetized human mesenchymal stem cells (hMSCs) using incubation times as short as one minute and iron concentrations as lows as 0.2 mM.