Cargando…
Walking Ahead: The Headed Social Force Model
Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226724/ https://www.ncbi.nlm.nih.gov/pubmed/28076435 http://dx.doi.org/10.1371/journal.pone.0169734 |
_version_ | 1782493697246494720 |
---|---|
author | Farina, Francesco Fontanelli, Daniele Garulli, Andrea Giannitrapani, Antonio Prattichizzo, Domenico |
author_facet | Farina, Francesco Fontanelli, Daniele Garulli, Andrea Giannitrapani, Antonio Prattichizzo, Domenico |
author_sort | Farina, Francesco |
collection | PubMed |
description | Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians’ heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism. |
format | Online Article Text |
id | pubmed-5226724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52267242017-01-31 Walking Ahead: The Headed Social Force Model Farina, Francesco Fontanelli, Daniele Garulli, Andrea Giannitrapani, Antonio Prattichizzo, Domenico PLoS One Research Article Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians’ heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism. Public Library of Science 2017-01-11 /pmc/articles/PMC5226724/ /pubmed/28076435 http://dx.doi.org/10.1371/journal.pone.0169734 Text en © 2017 Farina et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Farina, Francesco Fontanelli, Daniele Garulli, Andrea Giannitrapani, Antonio Prattichizzo, Domenico Walking Ahead: The Headed Social Force Model |
title | Walking Ahead: The Headed Social Force Model |
title_full | Walking Ahead: The Headed Social Force Model |
title_fullStr | Walking Ahead: The Headed Social Force Model |
title_full_unstemmed | Walking Ahead: The Headed Social Force Model |
title_short | Walking Ahead: The Headed Social Force Model |
title_sort | walking ahead: the headed social force model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226724/ https://www.ncbi.nlm.nih.gov/pubmed/28076435 http://dx.doi.org/10.1371/journal.pone.0169734 |
work_keys_str_mv | AT farinafrancesco walkingaheadtheheadedsocialforcemodel AT fontanellidaniele walkingaheadtheheadedsocialforcemodel AT garulliandrea walkingaheadtheheadedsocialforcemodel AT giannitrapaniantonio walkingaheadtheheadedsocialforcemodel AT prattichizzodomenico walkingaheadtheheadedsocialforcemodel |