Cargando…

Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress

Reactive oxygen and nitrogen species (ROS/RNS) play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lip...

Descripción completa

Detalles Bibliográficos
Autores principales: Griesser, Eva, Vemula, Venukumar, Raulien, Nora, Wagner, Ulf, Reeg, Sandra, Grune, Tilman, Fedorova, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226815/
https://www.ncbi.nlm.nih.gov/pubmed/28086193
http://dx.doi.org/10.1016/j.redox.2016.12.028
_version_ 1782493719699652608
author Griesser, Eva
Vemula, Venukumar
Raulien, Nora
Wagner, Ulf
Reeg, Sandra
Grune, Tilman
Fedorova, Maria
author_facet Griesser, Eva
Vemula, Venukumar
Raulien, Nora
Wagner, Ulf
Reeg, Sandra
Grune, Tilman
Fedorova, Maria
author_sort Griesser, Eva
collection PubMed
description Reactive oxygen and nitrogen species (ROS/RNS) play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lipid and protein modifications has not been simultaneously studied in detail so far. Biomolecule carbonylation is one of the most common biomarkers of oxidative stress. Using a dynamic model of nitroxidative stress we demonstrated rapid changes in biomolecule carbonylation in rat cardiomyocytes. Levels of carbonylated species increased as early as 15 min upon treatment with the peroxynitrite donor, 3-morpholinosydnonimine (SIN-1), and decreased to values close to control after 16 h. Total (lipids+proteins) vs. protein-specific carbonylation showed different dynamics, with a significant increase in protein-bound carbonyls at later time points. Treatment with SIN-1 in combination with inhibitors of proteasomal and autophagy/lysosomal degradation pathways allowed confirmation of a significant role of the proteasome in the degradation of carbonylated proteins, whereas lipid carbonylation increased in the presence of autophagy/lysosomal inhibitors. Electrophilic aldehydes and ketones formed by lipid peroxidation were identified and relatively quantified using LC-MS/MS. Molecular identity of reactive species was used for data-driven analysis of their protein targets. Combination of different enrichment strategies with LC-MS/MS analysis allowed identification of more than 167 unique proteins with 332 sites modified by electrophilic lipid peroxidation products. Gene ontology analysis of modified proteins demonstrated enrichment of several functional categories including proteins involved in cytoskeleton, extracellular matrix, ion channels and their regulation. Using calcium mobilization assays, the effect of nitroxidative stress on the activity of several ion channels was further confirmed.
format Online
Article
Text
id pubmed-5226815
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-52268152017-01-23 Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress Griesser, Eva Vemula, Venukumar Raulien, Nora Wagner, Ulf Reeg, Sandra Grune, Tilman Fedorova, Maria Redox Biol Research Paper Reactive oxygen and nitrogen species (ROS/RNS) play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lipid and protein modifications has not been simultaneously studied in detail so far. Biomolecule carbonylation is one of the most common biomarkers of oxidative stress. Using a dynamic model of nitroxidative stress we demonstrated rapid changes in biomolecule carbonylation in rat cardiomyocytes. Levels of carbonylated species increased as early as 15 min upon treatment with the peroxynitrite donor, 3-morpholinosydnonimine (SIN-1), and decreased to values close to control after 16 h. Total (lipids+proteins) vs. protein-specific carbonylation showed different dynamics, with a significant increase in protein-bound carbonyls at later time points. Treatment with SIN-1 in combination with inhibitors of proteasomal and autophagy/lysosomal degradation pathways allowed confirmation of a significant role of the proteasome in the degradation of carbonylated proteins, whereas lipid carbonylation increased in the presence of autophagy/lysosomal inhibitors. Electrophilic aldehydes and ketones formed by lipid peroxidation were identified and relatively quantified using LC-MS/MS. Molecular identity of reactive species was used for data-driven analysis of their protein targets. Combination of different enrichment strategies with LC-MS/MS analysis allowed identification of more than 167 unique proteins with 332 sites modified by electrophilic lipid peroxidation products. Gene ontology analysis of modified proteins demonstrated enrichment of several functional categories including proteins involved in cytoskeleton, extracellular matrix, ion channels and their regulation. Using calcium mobilization assays, the effect of nitroxidative stress on the activity of several ion channels was further confirmed. Elsevier 2016-12-28 /pmc/articles/PMC5226815/ /pubmed/28086193 http://dx.doi.org/10.1016/j.redox.2016.12.028 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Griesser, Eva
Vemula, Venukumar
Raulien, Nora
Wagner, Ulf
Reeg, Sandra
Grune, Tilman
Fedorova, Maria
Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
title Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
title_full Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
title_fullStr Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
title_full_unstemmed Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
title_short Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
title_sort cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226815/
https://www.ncbi.nlm.nih.gov/pubmed/28086193
http://dx.doi.org/10.1016/j.redox.2016.12.028
work_keys_str_mv AT griessereva crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress
AT vemulavenukumar crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress
AT rauliennora crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress
AT wagnerulf crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress
AT reegsandra crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress
AT grunetilman crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress
AT fedorovamaria crosstalkbetweenlipidandproteincarbonylationinadynamiccardiomyocytemodelofmildnitroxidativestress