Cargando…
SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events
We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals’ daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participa...
Autores principales: | Cuttone, Andrea, Bækgaard, Per, Sekara, Vedran, Jonsson, Håkan, Larsen, Jakob Eg, Lehmann, Sune |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5226832/ https://www.ncbi.nlm.nih.gov/pubmed/28076375 http://dx.doi.org/10.1371/journal.pone.0169901 |
Ejemplares similares
-
Measuring Large-Scale Social Networks with High Resolution
por: Stopczynski, Arkadiusz, et al.
Publicado: (2014) -
Temporal and cultural limits of privacy in smartphone app usage
por: Sekara, Vedran, et al.
Publicado: (2021) -
The Strength of Friendship Ties in Proximity Sensor Data
por: Sekara, Vedran, et al.
Publicado: (2014) -
Do alexithymia and negative affect predict poor sleep quality? The moderating role of interoceptive sensibility
por: Huang, Yun-Hsin, et al.
Publicado: (2022) -
Sensible
Publicado: (1883)