Cargando…
Rapid control and feedback rates enhance neuroprosthetic control
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate...
Autores principales: | Shanechi, Maryam M., Orsborn, Amy L., Moorman, Helene G., Gowda, Suraj, Dangi, Siddharth, Carmena, Jose M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227098/ https://www.ncbi.nlm.nih.gov/pubmed/28059065 http://dx.doi.org/10.1038/ncomms13825 |
Ejemplares similares
-
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering
por: Shanechi, Maryam M., et al.
Publicado: (2016) -
Advances in Neuroprosthetic Learning and Control
por: Carmena, Jose M.
Publicado: (2013) -
Emergence of a Stable Cortical Map for Neuroprosthetic Control
por: Ganguly, Karunesh, et al.
Publicado: (2009) -
Control and Ownership of Neuroprosthetic Speech
por: Maslen, Hannah, et al.
Publicado: (2020) -
Selective modulation of cortical population dynamics during neuroprosthetic skill learning
por: Zippi, Ellen L., et al.
Publicado: (2022)