Cargando…
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug...
Autores principales: | Hao, Ming, Bryant, Stephen H., Wang, Yanli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227688/ https://www.ncbi.nlm.nih.gov/pubmed/28079135 http://dx.doi.org/10.1038/srep40376 |
Ejemplares similares
-
Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding
por: Li, Jiaxin, et al.
Publicado: (2022) -
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization
por: Wang, Aizhen, et al.
Publicado: (2021) -
Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction
por: Liu, Yong, et al.
Publicado: (2016) -
DNILMF-LDA: Prediction of lncRNA-Disease Associations by Dual-Network Integrated Logistic Matrix Factorization and Bayesian Optimization
por: Li, Yan, et al.
Publicado: (2019) -
Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge
por: Takeda, Takako, et al.
Publicado: (2017)