Cargando…
Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control
Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we s...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227703/ https://www.ncbi.nlm.nih.gov/pubmed/28067224 http://dx.doi.org/10.1038/ncomms13920 |
_version_ | 1782493857088274432 |
---|---|
author | Dallérac, Glenn Graupner, Michael Knippenberg, Jeroen Martinez, Raquel Chacon Ruiz Tavares, Tatiane Ferreira Tallot, Lucille El Massioui, Nicole Verschueren, Anna Höhn, Sophie Bertolus, Julie Boulanger Reyes, Alex LeDoux, Joseph E. Schafe, Glenn E. Diaz-Mataix, Lorenzo Doyère, Valérie |
author_facet | Dallérac, Glenn Graupner, Michael Knippenberg, Jeroen Martinez, Raquel Chacon Ruiz Tavares, Tatiane Ferreira Tallot, Lucille El Massioui, Nicole Verschueren, Anna Höhn, Sophie Bertolus, Julie Boulanger Reyes, Alex LeDoux, Joseph E. Schafe, Glenn E. Diaz-Mataix, Lorenzo Doyère, Valérie |
author_sort | Dallérac, Glenn |
collection | PubMed |
description | Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS–US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3–6 Hz). Strikingly, we also show that a change to the CS–US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala. |
format | Online Article Text |
id | pubmed-5227703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52277032017-02-01 Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control Dallérac, Glenn Graupner, Michael Knippenberg, Jeroen Martinez, Raquel Chacon Ruiz Tavares, Tatiane Ferreira Tallot, Lucille El Massioui, Nicole Verschueren, Anna Höhn, Sophie Bertolus, Julie Boulanger Reyes, Alex LeDoux, Joseph E. Schafe, Glenn E. Diaz-Mataix, Lorenzo Doyère, Valérie Nat Commun Article Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS–US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3–6 Hz). Strikingly, we also show that a change to the CS–US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala. Nature Publishing Group 2017-01-09 /pmc/articles/PMC5227703/ /pubmed/28067224 http://dx.doi.org/10.1038/ncomms13920 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Dallérac, Glenn Graupner, Michael Knippenberg, Jeroen Martinez, Raquel Chacon Ruiz Tavares, Tatiane Ferreira Tallot, Lucille El Massioui, Nicole Verschueren, Anna Höhn, Sophie Bertolus, Julie Boulanger Reyes, Alex LeDoux, Joseph E. Schafe, Glenn E. Diaz-Mataix, Lorenzo Doyère, Valérie Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
title | Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
title_full | Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
title_fullStr | Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
title_full_unstemmed | Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
title_short | Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
title_sort | updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227703/ https://www.ncbi.nlm.nih.gov/pubmed/28067224 http://dx.doi.org/10.1038/ncomms13920 |
work_keys_str_mv | AT dalleracglenn updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT graupnermichael updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT knippenbergjeroen updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT martinezraquelchaconruiz updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT tavarestatianeferreira updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT tallotlucille updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT elmassiouinicole updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT verschuerenanna updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT hohnsophie updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT bertolusjulieboulanger updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT reyesalex updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT ledouxjosephe updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT schafeglenne updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT diazmataixlorenzo updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol AT doyerevalerie updatingtemporalexpectancyofanaversiveeventengagesstriatalplasticityunderamygdalacontrol |