Cargando…
Quantum-chemical insights from deep tensor neural networks
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning a...
Autores principales: | Schütt, Kristof T., Arbabzadah, Farhad, Chmiela, Stefan, Müller, Klaus R., Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228054/ https://www.ncbi.nlm.nih.gov/pubmed/28067221 http://dx.doi.org/10.1038/ncomms13890 |
Ejemplares similares
-
Machine learning meets quantum physics
por: Schütt, Kristof, et al.
Publicado: (2020) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
por: Schütt, K. T., et al.
Publicado: (2019) -
Combining Machine Learning and Computational Chemistry
for Predictive Insights Into Chemical Systems
por: Keith, John A., et al.
Publicado: (2021) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021)