Cargando…
A combinational feature selection and ensemble neural network method for classification of gene expression data
BACKGROUND: Microarray experiments are becoming a powerful tool for clinical diagnosis, as they have the potential to discover gene expression patterns that are characteristic for a particular disease. To date, this problem has received most attention in the context of cancer research, especially in...
Autores principales: | Liu, Bing, Cui, Qinghua, Jiang, Tianzi, Ma, Songde |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522806/ https://www.ncbi.nlm.nih.gov/pubmed/15450124 http://dx.doi.org/10.1186/1471-2105-5-136 |
Ejemplares similares
-
Esub8: A novel tool to predict protein subcellular localizations in eukaryotic organisms
por: Cui, Qinghua, et al.
Publicado: (2004) -
Iterative ensemble feature selection for multiclass classification of imbalanced microarray data
por: Yang, Junshan, et al.
Publicado: (2016) -
Cancer Classification Utilizing Voting Classifier with Ensemble Feature Selection Method and Transcriptomic Data
por: Khatun, Rabea, et al.
Publicado: (2023) -
Correlation-Based Ensemble Feature Selection Using Bioinspired Algorithms and Classification Using Backpropagation Neural Network
por: Elgin Christo, V. R., et al.
Publicado: (2019) -
Road Surface Classification Using a Deep Ensemble Network with Sensor Feature Selection
por: Park, Jongwon, et al.
Publicado: (2018)