Cargando…

Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice

The aim of the present study was to investigate whether pyrroloquinoline quinine (PQQ) serve a radioprotective role in parotid gland damage induced by total body irradiation (TBI) in C57BL/6J mice. A total of 15 female 8-week-old C57BL/6J mice were randomly assigned into three treatment groups: i) U...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yuanqing, Chen, Ning, Miao, Dengshun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5228579/
https://www.ncbi.nlm.nih.gov/pubmed/28105098
http://dx.doi.org/10.3892/etm.2016.3843
Descripción
Sumario:The aim of the present study was to investigate whether pyrroloquinoline quinine (PQQ) serve a radioprotective role in parotid gland damage induced by total body irradiation (TBI) in C57BL/6J mice. A total of 15 female 8-week-old C57BL/6J mice were randomly assigned into three treatment groups: i) Untreated control (no irradiation); ii) 4 gray (Gy) X-ray irradiation; iii) 4 Gy X-ray irradiation with additional dietary PQQ (4 mg PQQ/kg in normal diet). Each group included five mice. After 4 weeks, all animals were collected for evaluating the phenotype, body weight, pathological and biochemical parameters. The results indicated that PQQ had biological effects on total body phenotype. PQQ could partially rescue TBI-induced damage to parotid glands. In addition, PQQ served radioprotective effects on parotid glands via multiple mechanisms, such as promoting proliferation, inhibiting apoptosis and senescence, upregulating antioxidant ability, scavenging reactive oxygen species and reducing DNA damage. The results of the present study demonstrate that PQQ serves a radioprotective role in parotid gland damage induced by TBI, possibly via inhibiting oxidative stress and participating in DNA damage repair. The study provides experimental and theoretical knowledge for the development of radioprotective clinical drugs.