Cargando…

A first-draft human protein-interaction map

BACKGROUND: Protein-interaction maps are powerful tools for suggesting the cellular functions of genes. Although large-scale protein-interaction maps have been generated for several invertebrate species, projects of a similar scale have not yet been described for any mammal. Because many physical in...

Descripción completa

Detalles Bibliográficos
Autores principales: Lehner, Ben, Fraser, Andrew G
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522870/
https://www.ncbi.nlm.nih.gov/pubmed/15345047
http://dx.doi.org/10.1186/gb-2004-5-9-r63
Descripción
Sumario:BACKGROUND: Protein-interaction maps are powerful tools for suggesting the cellular functions of genes. Although large-scale protein-interaction maps have been generated for several invertebrate species, projects of a similar scale have not yet been described for any mammal. Because many physical interactions are conserved between species, it should be possible to infer information about human protein interactions (and hence protein function) using model organism protein-interaction datasets. RESULTS: Here we describe a network of over 70,000 predicted physical interactions between around 6,200 human proteins generated using the data from lower eukaryotic protein-interaction maps. The physiological relevance of this network is supported by its ability to preferentially connect human proteins that share the same functional annotations, and we show how the network can be used to successfully predict the functions of human proteins. We find that combining interaction datasets from a single organism (but generated using independent assays) and combining interaction datasets from two organisms (but generated using the same assay) are both very effective ways of further improving the accuracy of protein-interaction maps. CONCLUSIONS: The complete network predicts interactions for a third of human genes, including 448 human disease genes and 1,482 genes of unknown function, and so provides a rich framework for biomedical research.