Cargando…

Asymmetric split H-shape nanoantennas for molecular sensing

In this paper we report on a very sensitive biosensor based on gold asymmetric nanoantennas that are capable of enhancing the molecular resonances of C-H bonds. The nanoantennas are arranged as arrays of asymmetric-split H-shape (ASH) structures, tuned to produce plasmonic resonances with reflectanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Mbomson, I. G., Tabor, S., Lahiri, B., Sharp, G., McMeekin, S. G., De La Rue, R. M., Johnson, N. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231308/
https://www.ncbi.nlm.nih.gov/pubmed/28101426
http://dx.doi.org/10.1364/BOE.8.000395
Descripción
Sumario:In this paper we report on a very sensitive biosensor based on gold asymmetric nanoantennas that are capable of enhancing the molecular resonances of C-H bonds. The nanoantennas are arranged as arrays of asymmetric-split H-shape (ASH) structures, tuned to produce plasmonic resonances with reflectance double peaks within the mid-infrared vibrational resonances of C-H bonds for the assay of deposited films of the molecule 17β-estradiol (E2), used as an analyte. Measurements and numerical simulations of the reflectance spectra have enabled an estimated enhancement factor on the order of 10(5) to be obtained for a thin film of E2 on the ASH array. A high sensitivity value of 2335 nm/RIU was achieved, together with a figure of merit of approximately 8. Our experimental results were corroborated using numerical simulations for the C-H stretch vibrational resonances from the analyte, superimposed on the plasmonic resonances of the ASH nanoantennas.